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FOREWORD

The Lockheed Missiles & Space Company, as prime contractor, and AiResearch

Manufacturing Company, as subcontractor, are submitting this interim report as

partial fulfillment of the requirements of Contract NAS 3-7942, Liquid Propellant

Thermal Conditioning System, dated 26 January 1966. This work is being conducted

for the National Aeronautics and Space Administration through the NASA Lewis Research

Center, Cleveland, Ohio.

This program is guided by W. H. Sturbentz as Program Manager and B. R. Bullard

as Assistant Program Manager. Recognition must be given to the dedicated efforts

of personnel at both Lockheed and AiReseareh, whose service has been invaluable in

contributing to the accomplishments presented in this report. In this regard, special

mention is given to Mssrs. J. Kimball and J. Ruder of AiResearch for their contri-

butions and dedicated efforts in solving a very challenging problem.

Recognition is also given to the timely and valuable guidance, consultation, and direc-

tion provided by Mr. Gordon T. Smith as NASA, LeRC, Program Manager.

The Lockheed & Missiles Space Company and the AiResearch Manufacturing Company

are indeed pleased to be conducting this program for the NASA Lewis Research Center.

The technical data, results, analyses, and conclusions developed to date on this pro-

gram are presented in this report.
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SUMMARY

For cryogenic propellants to be used efficiently in long-duration missions, the propel-

lant tanks must be vented during zero-gravity coast periods. A venting system concept

has been defined that will efficiently control the tank pressures during these periods,

in spite of the uncertain location of the ullage or liquid propellant, by venting vapor

overboard. In this concept, referred to as a liquid propellant thermal conditioning sys-

tem, tank fluid is extracted, expanded to a lower temperature and pressure, and passed

through a heat exchanger where it absorbs heat from the bulk propellant and the ullage

in the tank. This cooling of the tank contents and gas venting results in a desired tank

pressure reduction. This program was formulated to investigate the effectiveness of

the thermal conditioning system concept for cryogenics tank pressure control.

During this investigation, potential component candidates were defined for use as fluid

removal units, expansion units, heat exchanger units, and propellant mixer units.

Parametric performance data were developed for these components and are presented

in this report. Also, criteria for establishing propellant mixing requirements were

derived and are included.

qb

These parametric data and mixing criteria were applied to three reference missions

and an optimum thermal conditioning system was defined for the liquid hydrogen tank on

each. This flight system consists of:

• Fluid removal unit

• Pressure regulator (expansion unit)

• Compact heat exchanger

• Mixer with dc brushless motor drive

• Solenoid shutoff valve

• Pressure switch

LOCKHEED MISSILES & SPACE COMPANY
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The three missions involved a wide spectrum of vehicle sizes and propellant heating

rates, but the same thermal conditioning system was optimum for each. It weighs

approximately 15 pounds and can be preassembled onto a 14-inch diameter plate. The

motor power consumption is only 2.3 watts when operating, resulting in less than 14

pounds of boiloff for the longest missions (220 days). The brushless dc motor was

selected for the mixer drive because of the predicted low power consumption, although

bn_shless dc motors suitable for use in liquid hydrogen are not currently available.

The selected system, with the exception of the motor drive, is being fabricated and will

be demonstrated in ground-based tests in a full-scale, 9-foot diameter liquid hydrogen

tank. For the test hardware, an ac induction motor is being substituted for the dc

brushless motor. This unit was available at low cost and was designed for and has been

qualified in liquid hydrogen. Itwill have a power consumption of 14 watts at the design

conditions for the liquid propellant thermal conditioning system.

LOCKHEED MISSILES & SPACE COMPANY
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INTRODUCTION

In the past, cryogenic propellants and their inherently superior performance capability

were considered and discarded for long-duration space propulsion systems, such as the

Saturn V Apollo Service Module and the Lunar Module, due to uncertainties with respect

to the space storabilityand usability of liquidhydrogen. Liquid hydrogen and liquid

oxygen propellants and their high-performance potentialwere, however, accepted for

the Saturn V launch vehicle stages since the special means to store cryogenic propel-

lants in these booster stages were required only to withstand ground hold, launch, ascent

environments, and related short flighttime. Relatively simple foam-type insulations

and ullage volume venting systems have proved effective in containing and venting the

volatile cryogens during these short flighttimes.

4

In the application of cryogens to long-duration space flight missions, a problem requir-

ing solution involves the venting of propellant vapor during zero or low-gravity coast

periods. In a zero- or low-gravity flight environment, the location and movement

of the liquid propellant in the tank is uncertain. As a result, venting of the tank

through the ground hold vent system is unreliable and at best very inefficient because

of the very likely ingestion of large amounts of liquid hydrogen which would be vented

directly overboard. Prolonged venting of propellant in such a manner will cause a loss

of the/nission because of dissipation of propellant and consumption of attitude control

propellants to correct for large variations and unbalances in vehicle motions induced by

the vent system.

A venting system concept has been defined that will avoid these difficulties. This con-

cept, a liquid propellant thermal conditioning system, maintains tank pressure control

through the extraction of either liquid or gaseous hydrogen (and helium gas if present)

and utilization of the heat transport properties of this extracted fluid. By passing this

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

extracted fluid through a high-pressure drop valve, the resulting refrigerated vapor

when passed through a heat exchanger can be used to efficiently absorb heat from the

bulk propellant and ullage in the propellant tank. This chilling of the fluid contents

causes some condensation of ullage gases with a concomitant drop in tank pressure.

The refrigerated vapor upon passing through the heat exchanger is converted into a

saturated or supersaturated gas and is vented from the propellant tank. The system,

in principle, may be operated either intermittently or continuously.

Many configurations of the basic concept are possible. The program described and

the results presented in this interim report are addressed to creating a design based

upon this concept of a light-weight, reliable, and efficient vent system for the liquid

hydrogen tank of long-duration flight space propulsion systems. Three missions and

vehicles were selected to which candidate vent systems were applied and analyzed.

The data developed are also presented in parametric form to permit their application

to other vehicles and missions.

The program is divided into five tasks:

Task I -- System Design Concepts and Analysis

Task II --Optimization of System Designs

Task III--Mixing Requirements Evaluation and Test of the Mixer Unit

Task IV- Design, Fabrication, and Testing the Thermal Conditioning Unit

Task V -- Evaluation of System Fabrication and Test Data

This interim report presents the design, data, results, evaluations, and conclusions

from the completed activities of Task I, II, and III. The report is divided into six

sections. The first section contains a description of the system concepts and the

parametric results of the component analyses. The second section presents criteria for

establishing propellant mixing requirements. The third section describes a method

for using the parametric component data in evaluating a system design for a particular

mission. This method is then applied to missions (1), (2), and (3) in the fourth section;

leading to the selection of a particular system. This system is then optimized in the

fifth section and its performance is presented in the sixth.

4
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Miss ion  (1) - Ear th-Lunar  Logistics Miss ion  

Miss ion  (2) - Ear th -Mars  Kicks tage  Miss ion  

Miss ion  (3) - Ear th -Mars  Manned Mission 

R e f e r e n c e  Miss ion  Vehic les  
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Section I

SYSTEMS CONCEPTS AND PARAMETRIC ANALYSES

SYSTEMS CONCEPTS

4

The basic function of the liquidpropellant thermal conditioning system is to maintain

pressure control ifthe liquidhydrogen tank during zero- and low-gravity coast periods

in space flightwhen location of the gas ullage region is somewhat uncertain. Control

of the tank pressure is accomplished through the combined use of the five basic units

Figure I-1 also shows the basic thermodynamiclistedbelow and shown in Fig. I-l.

process as applied to the vent fluid.

Fluid removal unit • Flow control unit

Expansion unit • Mixer unit

Heat exchanger unit

GH 2 OR HI

t ........... t
LH 2 OR

REMOVAL VENT GAS

UNIT NOZZLES

J_

32

30

1
21

15

IR

a

6

$AT. LIQUID

QUALITY SAT. VAPOR

l_ .IC_ _4O _ .4O _ 0 2O 4O 6O 8O IC_

ERTHALRY _BTU/LB_

Fig. I-1

SAT. LIQUID SAT VAPOR

140 lZO 14O 4O .6O .(0 ._ 0 20 4O 60 80 14O

ENTHALPY (BTU/LB)

Liquid Propellant Thermal Conditioning System Schematic
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The fluid removal unit provides gaseous or liquid hydrogen (State (1) on Fig. I-1) to the

expansion unit and heat exchanger so that the total enthalpy change is adequate to

remove heat deposited in the propellant from heat leaks through insulation, plumbing,

and tank support structure.

The expansion unit lowers the pressure and temperature of the incoming fluid (State (2)

on Fig. I-1). When flowing liquid hydrogen, this temperature drop provides the neces-

sary thermal driving potential for operation of the heat exchanger. When flowing

gaseous hydrogen and/or helium pressurant gas, tank pressure control is accomplished

by direct venting of hydrogen boiloff and pressurant gas.

The heat exchanger unit, which may be located inside the tank or on the tank wall,

allows the low pressure refrigerated vapor to remove heat from the propellant in the

tank. In the process, the refrigerated vapor is converted to a saturated or super-

heated vapor which is then discharged from the propellant tank (State (3) on Fig. I-l).

A mixer unit may be required, and specifically will be required if the thermal condition-

ing system employs a compact heat exchanger located in the propellant tank. Since

gravity-forced convection is absent in a zero-gravity environment, heat transfer would

be limited to the conduction mode only. Consequently, fluid currents should be made

to flow over the heat exchanger to increase the heat transfer rates by forced convection

and maintain positive pressure control throughout the tank. It is also possible that

cooled propellant drawn throughout the heat exchanger and discharged along the tank

walls may effect suppression of vapor bubble formation by ensuring a sufficiently large

heat transfer coefficient to remove, by forced convection, all heat entering through the

tank wall. In the event that bubbles are generated on the tank wall at points of high local

heating the mixer will serve to aid in the removal or detachment of vapor bubbles from

the wall and ultimate vapor bubble condensation and collapse.

The flow control unit provides the system vent flow shutoff function as well as a fixed

orifice flow-area. Because only gaseous hydrogen and/or helium will be present

downstream on the heat exchanger cold side, a relatively constant vent flow rate will

be attained during periods of tank venting.
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On the basis of these system functional requirements, a large number of liquid propel-

lant thermal conditioning system concepts may been defined. To provide a basis for

component parametric data development and component matching requirements, a few

possible concepts are shown in Fig. I-2.

The conceptual systems serve to identify the components that are to be analyzed para-

metrically. A list of the important parameters is shown in Table I-I. These parame-

tric data can be used to arrive at optimized systems with matched components for many

missions of interest. The independent parameters were studied over the range indi-

cated by the data in the right-hand column.

t
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-¢

Component

Fluid Removal Units

• Capillary
standpipe

• Wicking device

Dynamic

separator

Dielectrophoretic
device

• Fluid filter

Expansion Units

• Valves

Heat Exchanger Units

• Tank-wall heat

exchanger

Table I-1

PARAMETERS FOR ANALYSIS

Dependent Parameter Independent Parameter

Pike dimensions

Weight

Weight

Weight
Dimensions
Power

Number of electrodes

Weight

Weight

Minimum ullage
volume

Tank diameter

Tank diameter

Tank height
Minimum ullage

Tank height

Gravity level

Inlet fluid quality
Vent flow rate

Separation efficiency

Voltage
Electrode spacing

Ullage volume

Tank height
Electrode spacing
Voltage

Flow rate

Maximum tempera-
ture differential

Vent fluid quality into

heat exchanger

Weight
Size

Valve pressure drop

Pressure drop
Vent fluid flow rate

Tank pressure

Cold-side heat trans-
fer coefficients

Vent fluid pressure
drop

I-5

Vent fluid flow rate
Tube size

Fluid quality

Fluid pressure

Range of
Independent
Parameter

0-30 ft

0-30 ft
0-60 ft
5%

0-60 ft

10-3-10-15 g/go

0-90%
0-60 lb/hr
O-lOO%

50-200 kv
0-2 in.
5-60%

0-60 ft
0-2 in.

50-200 kv

0-60 lb/hr

0-160 psi

0-100%

0-160 psi
0-60 lb/hr

0-188 psi

0-60 lb/hr
1/16-1 in.
0-100%

4-150 psi

LOCKHEED MISSILES & SPACE COMPANY
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Component

• Compact heat
exchanger

Flow Control Unit

• Valve

Mixer Unit

• Impeller

• Electric motors

• Turbine

Table I-1 (Cont.)

Dependent Parameter

Tube attachment

spacing

Weight

Warm-side
coefficients

Weight
Dimensions

Vent fluid pressure
drop

Independent Parameter

Tank thickness

Maximum heat flux

Tube size
Tank radius
Maximum heat flux

Expansion fluid tem-
perature drop

Tank pressure

Circulation velocity

Vent fluid flow rate

Total heating rate

Inlet quality
Circulation velocity

Vent fluid flow rate

Inlet quality
Heat exchanger volume

Weight Flow rate

Weight

Diameter

Power input

Diameter

Weight

Weight
Diameter
Power output

Bulk fluid circulation
rate

Bulk fluid quality

Power output

Motor type

Vent flow rate

Inlet pressure
Pressure ratio

Efficiency

Range of
Independent
Parameter

0.03-0.2 in.

i0 Btu/hr-ft 2

1/16-1 in.
0-15 ft
10 Btu/hr-f 
0-30OR

0-150

0-25 ft/sec

0-60 Ib/hr
0-5000 Btu/hr

0-100%
0-25 ft/sec

0-60 lb/hr

0-100% 3
0-300 in.

0-60 lb/hr

0-1500 lb/hr

0-100%

0-100 w

0-60 lb/hr

10-50 psia
5-100
0-80%
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COMPONENT PARAMETRIC ANALYSES

Fluid Removal Unit

A liquid propellant thermal conditioning system design may be based upon one of two

premises: (1) that the system will effectively control the liquid hydrogen tank pressure

only by withdrawing liquid hydrogen from the tank, or (2) that the system will effectively

control tank pressure by withdrawal of either liquid hydrogen or gas mixtures of hydro-

gen and helium. Under the first premise, the fluid-removal unit must be designed to

always withdraw liquid hydrogen during the vent cycle or over-pressurization of the

tank and even catastrophic rupture may occur. Under the second premise, the fluid-

removal unit is a small and simple fluid filter placed ahead of the intake port of the

expansion unit. The only function of this filter is to remove foreign particles such as

crystals or dirt which, if allowed to enter the expansion unit port, might cause clogging

and flow restriction with its obvious undesired consequences.

A system based upon withdrawal of only liquid hydrogen has one possible advantage

over systems operable upon any mixture of liquid or gas. This advantage is mani-

fested in the retention of helium pressurant gas during tank venting. As will be fully

discussed in later sections of this report, a smaller total helium pressurant gas sup-

ply is required for a given mission, if such gas retention combined with a pressuriza-

tion system control based upon bulk fluid temperature is possible.

A liquid removal unit to be useful must be a lightweight device that will reliably provide

liquid hydrogen to the expansion unit. Therefore, to determine the feasibility of a

liquid removal unit, further attention was given to the design of liquid removal devices

that will always provide liquid hydrogen to the thermal conditioning system during

venting. An obvious technique is the use of propellant settling rockets, but this tech-

nique is prohibitively costly of propellant consumption for any of the three missions

under consideration.

I-7
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The basic function of a liquid removal unit is to guarantee a sufficient rate of liquid

hydrogen through the expansion unit that the total enthalpy change is equal to, or

greater than, the rate at which heat is deposited in the propellant. Four concepts

were evaluated:

• Wick device

• Capillary standpipe

• Dielectrophoretic unit

• Dynamic separator

Wick Device. A wick device is shown in Fig. I-3. It consists of a central perforated

tube closed at both ends, a liquid absorption or wicking material, and an outer mechan-

ical support shell which also protects against liquid sloshing or circulation loads.

The central tube is the reservoir to which the expansion valve is connected. The cen-

tral tube is replenished from the wicking material which extracts liquid from the main

body of liquid by capillary action. This wick device must extend from one wall of the

tank to the opposite wall to provide some assurance of being in contact with the liquid

propellant, particularly for firing sequences as in Mission (1), where the tank is less

than 5 percent full for the last firing. If the wick is dry, the device will selectively

feed gas from the tank to the expansion unit.

The process of drawing only liquid hydrogen from the wicking material is based upon

designing the device so that the pressure differential due tofluid dynamics across the

central tube perforations is less then the equivalent restraining capillary pressure

of a gas bubble attached to the central tube perforation. The desired operation of this

device is illustrated in the one-dimensional sketch shown in Fig. I-4. Vapor bubbles

will not pass through the screen, provided the following equation is satisfied.

APf + AP L < AP B

Symbols used throughout this report are listed in the Table of Symbols at the end of

the section in which they occur.

I-8
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Fig. I-3 Wick-Type Liquid Removal Unit

L,0U,0HYDROGEN LIQUID

_ ] HYDROGEN
\ / CONTAINED

_ L \ / INWICK

_ ___pl,___ LIQUID FLOW _ __ , _ _ MATERIAL

SCREEN _ __

VAPOR BUBBLES

Fig. I-4 Principle of Operation of Wick Device
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These quantities are expressed as:

Fluid drag through the screen,

p L U2

A Pf - CD2g c

Static pressure across the wick,

A PL = PL <g-c_ L

Capillary pre s sure acro s s vapor-liquid interface,

I

b

q_

A PB = gc Rs

If, however, vapor is present inside the central tube and dries the inside surface,

vapor will preferentially pass through the central tube. It is essential, therefore, that

the volume enclosed by the central tube be completely void of vapor at all times. Such

a condition cannot always be expected, and the unit would then fail to provide liquid

hydrogen to the thermal conditioning system. This failure situation is likely to occur

during venting when liquid hydrogen saturated at tank pressures higher than the vent

cycle shutoff pressure may be present in the reservoir tube. The drop in tank pres-

sure during venting and even the pressure drop across the perforations would cause

boiling of the saturated liquid in the reservoir tube. The drying action of the boiling

process may result in the selective feeding of gas from the tank to the expansion unit.

For these reasons, this device is not recommended for use in a thermal conditioning

system.

Capillary Standpipe. The equilibrium configuration of liquid hydrogen in a tank with a

capillary standpipe in a zero-gravity environment can be predicted analytically. These

predictions have been verified by liquid-liquid tests, drop tower tests, zero-gravity

aircraft tests, and Aerobee ballistic rocket tests.

1-10
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Surface tension in the liquid hydrogen forming the curved meniscus will cause a

capillary pressure drop across the liquid/vapor interface. It is this capillary pres-

sure drop that draws the liquid hydrogen into the standpipe. This column of liquid in

the standpipe will remain stably positioned unless a sufficiently adverse acceleration

is applied. Stability analyses indicate that liquid in the tank will probably remain

stable unless the Bond number, based upon tank radius, is greater than approximately

0.1. From experiments conducted to date, the most stable condition occurs if the

standpipe diameter is about 25 percent of the tank diameter and extends about 80 per-

cent across the tank. For these conditions, the weight of the capillary standpipe is

given by

W = 1.256R L(pS)

For the vehicles of interest in this program, an aluminum standpipe with 0. 013-in.

walls will suffice when supported at both ends with tie rods. The weight of a capillary

standpipe is shown in Fig. I-5.

103
m
I

m

t--

w

v
Z

p-

X '1_ m

rv I

_E

_E

X

_E
i

10

/

/

_o I I I I IIII I I I IIIII
102 103

1 WEIGHT (LB)

Fig. I-5 Capillary-Standpipe Liquid Removal Unit Weight
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This type of liquid-removal unit will not provide stable orientation of the liuquid during

accelerations greater than 10 -7 g for the three vehicles of interest. Another limitation

is that the standpipe will not provide stable orientation with a thermal conditioning sys-

tem that employs a mixer. Therefore, the standpipe can be considered only for a

thermal conditioning system operating continuously with a tank-wall heat exchanger

without a mixer.

Dielectrophoretic Device. Another liquid removal technique is the dielectrophoretie

containment device. The unit consists basically of a series of electrodes, mounted in

the tank, to which a high-voltage alternating current is applied. The stability and rate

at which liquid is drawn into the space between the electrodes depends on the voltage

applied, electrode spacing, dielectric characteristics of the liquid and acceleration

environment experienced by the vehicle.

Liquid contained within this device may be extracted by means of a drain tube between

appropriate electrodes. Any vapor formed within the electrodes will be forced from

the space between the electrodes by dielectrophoretic forces. However, even a dielec-

trophoretic device cannot be depended upon to provide liquid hydrogen at the expansion

unit intake, unless the electrodes span the tank. Such a system, however, may be

expected to be quite heavy relative to the weight of the other components of a thermal

conditioning system and to the possible weight savings expected from reduced helium

pressurant gas requirements. Calculations have been performed to provide a measure

of weight of such a system. Three different electrode configurations are shown in

Fig. I-6 as applied to the Mission(2) vehicle. Table I-2 presents the weights of dielec-

trophoretic liquid-removal units for a Mission (2) vehicle.

Obviously, complete orientation results in a large weight penalty to the venting system.

Also, the reliability of the vent system is reduced, since failure of the dielectrophoretic

unit may interrupt the supply of liquid hydrogen to the intake port of the expansion unit.

As with a capillary standpipe, a dielectrophoretic device cannot retain liquid hydrogen

when a propellant mixer is in operation. However, a dielectrophoretic device provides

some degree of propellant mixing through expulsion of vapor bubbles from the

electrodes.

1-12
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Table I-2

WEIGHTS OF DIE LECTROPHORETIC LIQUID-REMOVAL UNITS

(COMPLETE PROPELLANT ORIENTATION)

Electrode Weight

Geometry Area (ft 2) (lb)

Horizontal 787 69.5

Vertical fan 633 66.3

Cone frustum 503 51.0

Estimated

Power System

Supply Weight
(lb) (lb)

12.0 81.5

12.0 78.3

12.0 63.0

It is significant to note here that a dielectrophoretic device providing for full propellant

orientation permits the use of conventional ullage gas vent systems. It should also be

noted that operation of a dielectrophoretic device has not been demonstrated in liquid

hydrogen. Until extensive experimental evaluation of such devices in liquid hydrogen

has been conducted, all conclusions concerning the effectiveness of the device are

theoretical. Based upon these factors, a dielectrophoretic device is not recommended

for the thermal conditioning system; although, it theoretically offers a means for con-

tinuously supplying liquid hydrogen to the expansion unit.

Dynamic Separators. The liquid removal unit considered here is a dynamic separator.

The fluid entering the separator will be in a saturated state; any energy imparted to the

fluid will tend to vaporize the liquid. To ensure bubble-free liquid delivery from the

unit, the use of a centrifugal separator which causes the vapor bubbles to collapse (con-

dense) was considered. The bubble collapse is caused by increasing the static pressure

in the centrifugal field above the vapor pressure inside the bubble. Any uncollapsed

hydrogen bubbles or any helium gas will be forced toward the center of the unit for re-

moval. The bubble-free liquid can be collected at the periphery of the unit by pitot

tubes and then directed to the expansion unit. Figure I-7 shows the dynamic separator

impeller.
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The variables investigated were a bubble-free liquid hydrogen delivery rate of 0.02 to

60 lb/hr, tank pressures of 17 to 150 psia, and an inlet fluid quality of 0.1 to 0.9. It

was estimated that the pressure required to collapse all bubbles was twice the vapor

pressure by using the theoretical principles presented in references 1 and 2. The

minimum rotor tip speed required to obtain the pressure that will ensure that all bubbles

are collapsed is:

4gP vU = P

The rotor size and rotational speed required to achieve the desired tip speed are shown

in Fig. I-8. It can be seen that the rotor requirements are more severe for the higher

pressures.

In bringing the liquid phase to the tangential velocity u, the energy per unit mass is

u2/g.

Accounting for a possible source of heating due to frictional losses imparted by the

rotating device, we take as energy input

2
kU__

g

This increase in energy is usually encountered in rotating equipment such as pumps

and compressors. Commonly, k has the value of 1.10. If _?p is the hydraulic

efficiency of the separator, i.e., the portion of energy

2

_p k u----g

that goes into compressing the liquid, then the energy loss is

2

(I - 77p)k u--g
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This energy loss goes into vaporizing a fraction of the liquid, and also to heat the vapor.

For a conservative approach, the assumption is made that all the energy loss goes into

vaporization of the liquid.

The amount of unvaporized liquid, free from bubble,is given in terms of the separation

efficiency defined as

_separation - x

amount of liquid free from bubble
_ per unit mass of processed liquid

An encrgy balance yields then

2

(1- _?sep) (X) L = (1- Np) kU---g

ku 2

Nsep = 1 - XL-----_(1 - Np)

or

ku 2

7?se p = 1- j(l_ X) Lg (1- 77p) for vapor

Typical values for the work coefficiency and the hydraulic efficiency are 1.1 and 50

percent, respectively. Figure I-9 shows the separation efficiency for various inlet

fluid qualities. It can be seen that the separation efficiency drops considerably as the

tank pressure and fluid quality is increased. The relative amount of vapor discharged

through the center of the unit, therefore, increases. This fluid could be used on the

warm side of the heat exchanger. It should be noted that, at a tank pressure of 150 psia,

no bubble-free liquid would be obtained at fluid qualities above 0.82. In order for the

bubbles to be collapsed under this condition, heat must be removed from the processed

liquid during the separation process.
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Figure 1-10 shows the minimum shaft power required to collapse the bubbles as a func-

tion of fluid quality and tank pressure. The power requirements at 150 psia are ten

to a thousand times higher than at 17 psia. The power requirements at 17 psia could

be met with reasonable power supply weights .and the dynamic separator may be appli-

cable if the fluid entering the unit contains some liquid. It can be seen from Fig. I-8

that the required tip speed for bubble collapse can be obtained by choosing either rotor

size or speed. In any specific case, the design point will probably be chosen to obtain

the highest hydraulic efficiency. This will probably result in a rotor less than 3 in. in

diameter with resultant separator weights of up to 10 lb. For rotors of this diameter,

a rotational speed of 20,000 to 30,000 rpm is required for the unit, which presents

some difficulty in providing a suitable drive unit. However, the device may be con-

sidered for applications to liquid propellant thermal conditioning systems.

Expansion Unit

The function of the expansion unit is to reduce the pressure and temperature of the

•vented propellant. This low-temperature fluid can then absorb heat from the bulk of

the propellant as it passes through the heat exchanger. Two concepts are considered:

• Expansion valve

• Expansion turbine

Expansion Valve. To make a realistic parametric evaluation of expansion valve weight

and size requirements, three valve concepts were evaluated: one for continuous flow

with mass and pressure regulation, one for intermittent flow with mass and pressure

regulation, and one for continuous or intermittent flow with pressure regulation only.

For all concepts, the valve size was extremely small, dictated by hardware limitations

rather than by flow rates or control pressure ratio requirements.

For the continuous venting concept with mass and pressure regulation, the required

expansion valve is basically a very sensitive modulating relief valve. The unit con-

sidered is based primarily on an evaluation of details that incorporate features neces-

sary to produce a trouble-free, minimum weight unit of high reliability. The valve

concept evaluated parametrically is shown in Fig. 1-11. The unit is a normally closed,
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Fig. 1-11 Schematic of Continuous-Operating Expansion Valve

upstream, absolute pressure regulating valve. Liquid hydrogen under tank pressure

enters the valve body and acts against an evacuated bellows sensing element. This

element is initially positioned by the calibration spring to a slightly extended position

required to hold the metering pin against the valve seat. When the sensed pressure

reaches a predetermined level, the calibration spring force is balanced by the oppos-

ing force developed by the pressure acting on the bellows. A slight increase in pres-

sure above this predetermined set value causes the metering valve to modulate open

and maintain the desired inlet pressure level.

Preliminary sizing of the unit is based on an assumed tolerance band of *10 percent in

the pressure range from 17 to 50 psia and of *5 percent for the pressure range from

51 to 150 psia. The required sensitivity and minimum hysteresis is obtained in this

configuration by designing for the least possible number of friction points and by main-

taining high actuation to friction force ratios.
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The expansion unit will be located in a pressurized area, and the design is such that no

flange or calibration adjustment screw static seals are required. The valve seat can

be machined as an integral part of the outlet body, thus eliminating an insert arrange-

ment requiring static sealing.

This expansion unit is not capable of continuous operation over a wide flow rate range

of, for example, 0.02 to 6.0 lb per hour. Preliminary seat sizing calculations indi-

cate that the seat diameters and valve strokes become impractically small (under 0.01

and 0. 004 in., respectively) at liquid hydrogen flow rates below approximately 1 lb/hr.

Valve seat sizes and strokes required for flow rates below this value are impractical

from the standpoint of contaminatio n , manufacturing, and seat loading.

The design approach shown in Fig. 1-11 is based on an all stainless steel construction

due to the following considerations:

• The introduction of aluminum housing would result in a potential leak path

introduced by the necessity of incorporating a hard-seat insert.

• The reliability of stainless steel bellows capsules is substantially greater than

aluminum capsules, due to the greater uniformity of the material and the more

advanced manufacturing techniques associated with welding stainless steel

bellows elements.

• The use of more than one material could introduce potential problems associ-

ated with differential thermal expansion and galvanic corrosion.

Figures 1-12 and 1-13 show the predicted weight and size of the unit. It was found that

the weight increase was not a function of flow rate but rather of pressure. The effect

of pressure on the overall weight of the unit is also very small, as can be seen in

Fig. 1-12. The wall thickness of the housing does not increase significantly with pres-

sure because the thickness at low pressure is established by manufacturing and dura-

bility standards, rather than operational stress levels. The unit is approximately

2-1/2 in. in diameter. The overall increase in length is a result of an increase in

upper housing length to accommodate a longer calibration spring for the higher pres-

sures. In summary, it can be seen that, over the flow rate and pressures considered,

the valve weight and size are nearly constant. Further, the weight and size are the

smallest practicable for the rates considered here with respect to hardware construc-

tion limitations.
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Utilization of an intermittent-operating valve with both mass and pressure regulation

capabilities was considered for liquid hydrogen flow rates up to approximately 200 lb/hr.

The valve concept developed for the intermittent venting case is shown in Fig. 1-14.

The unit has a dual function which is performed by independent but physically joined

valve sections. The shutoff valve portion of the unit has a snap-acting or dead-band

type of operation that utilizes a Belleville spring. The unit is a snap-acting-shutoff

valve, integral with a downstream absolute pressure regulating valve. Liquid hydrogen

at tank pressure enters the valve body and acts against an evacuated bellows sensing

element. This element is initially positioned by the Belleville and calibration spring

to a slightly extended position as required to hold the poppet against the valve seat.

When the sensed pressure reaches a predetermined level, the Belleville and calibra-

tion spring forces are balanced by the opposing pressure force acting on the bellows.

A slight increase in pressure above this predetermined value causes the valve to snap

fully open. This snap action is obtained by utilizing a combination of spring rates so

that the total rate (Belleville, bellows, and coil spring rate) is slightly negative. Thus,

the sensed pressure must drop to a value below the actuation pressure in order for

deactuation or reseat to occur.

Fluid discharged from the shutoff valve portion of the unit flows through the metering

section of the regulating valve portion and thence to the discharge port. Subsequent

increase in downstream pressure is sensed by the regulator bellows element. The

increased pressure modulates the metering valve to maintain the discharge pressure

at the predetermined value. Controlling the discharge pressure in this way ensures

control over the downstream portions of the thermal conditioning system, such as the

heat exchanger, and results in improved overall system performance.

The operation of the snap-acting shutoff valve portion of the unit can best be understood

by referring to Fig. 1-15. The Belleville spring, which assists in preloading the valve

poppet against its seat, is deflected to Point B on the negative spring-rate side of its

load curve. Added to the load (LBv) of the Belleville spring at this point is the net

load (LcB) of the bellows, poppet return spring, and calibration spring as well as the

load (Lp) produced by the differential pressure across the poppet. For the valve to

open, the inlet pressure must increase to a point where the force (P1 A) produced by
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the sensed pressure acting on the bellows effective area just exceeds the sum of

LBV , LCB , and Lp (P1 A is actually negative with respect to LBV, LCB, and Lp}.

Once the spring-bellows-poppet assembly begins to move toward the open position the

closing force decays along some undefined but nearly straight line between Points C

and D. The valve stroke from Point C to any predetermined point (Point D) on the

combined spring load curve is controlled by mechanical stops within the bellows.

During this stroking action, the P1 A force remains constant so that when Point D is

reached there is an excess of force tending to hold the valve open. To effect closure

of the valve, the sensed pressure must drop to a reduced level, P2" At this point,

the combined spring force just exceeds the P2 A value and the valve closes because of

increasing closing forces.

The regulator valve portion of the unit functions to maintain an outlet pressure at a

predetermined absolute value. Fluid admitted to the inlet from the shutoff valve por-

tion flows around the metering valve and into the outlet passage. Outlet pressure is

routed through a damping orifice to the evacuated bellows sensing element. When the

sensed pressure reaches a value sufficient to overcome the bellows and coil spring

preload, the bellows moves downward allowing the metering valve to modulate toward

the seat and thus limit the outlet pressure.

q

Preliminary sizing of the intermittent expansion unit was based on the same tolerance

bands assumed for the continuous unit, a -10 percent band in the pressure range from

17 to 50 psia and a *5 percent band for the pressure range from 51 to 150 psia. This

unit will be located in the pressurized tank area and, therefore, the shutoff valve por-

tion does not contain static seals at the cover flange or at the calibration adjustment

screws. A static seal is required at the interface between the two valve portions and

at the regulator cover. Both valve seats can be machined as an integral part of their

respective valve bodies, thereby reducing the sources of leakage.

This configuration is capable of being scaled to the most favorable size for any specific

design requirement within the flow range of approximately 10 to 200 lb/hr of hydrogen.

The design is based on the same considerations as outlined in the previous discussion

for the continuous-operating valve. Figure 1-12 shows the predicted weight of the
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intermittent operating unit. The overall package size, which is 3 in. in diameter by

6.2 in. in length, remains basically constant over the entire pressure and flow range.

The use of a Belleville spring in the shutoff valve portion of this unit permits consider-

able latitude in the loads that can be produced without a change in the external package

size. The weight increases that result from heavier internal components required at

the higher pressures are largely compensated for by the slightly decreased diameters

that can be used at these pressures. Thus, the weight increase with tank pressure is

negligible. The basic criterion for establishing the size and weight of the regulator-

valve portion is the minimum bellows size into which the internal stops and springs

can be fitted. Thus, for the intermittent valve, the size and weight are not determined

by the required flow rates but by manufacturing limitations which will provide adequate

performance.

It is necessary to control both the flow rate and the pressure in the cold side of the

heat exchanger so that the heat loads and the available temperature difference are

known. The expansion valves just discussed perform both of these functions. However,

the practical lower limit of 1 lb/hr is in excess of the continuous flow rates required

for the three reference missions which are less than 1 lb/hr. By separating these

functions, the system may be designed for a lower flow rate with resulting lower heat

exchanger weight. Figure 1-16 illustrates a pressure regulator wherein the mass flow

regulation function has been removed. Mass flow regulation is provided by a solenoid

actuated valve placed downstream from the heat exchanger where volume flows are

large as a result of gasifying the hydrogen in the heat exchanger and the low discharge

pressures (Fig. I-1).

An expansion valve discharge pressure of about 4 psia was selected for the following

reasons: It is sufficiently above the triple point (1 psia} to prevent solid hydrogen

from forming in the heat exchanger core and, as will be shown later, yields a low

system weight penalty. It also provides sufficient pressure for actuation of the

expansion valve by the bellows and allows a choked orifice for flow control to be

placed downstream from the heat exchanger.
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Fig. 1-16 Pressure Regulator

It is necessary to place a shutoff valve downstream from the heat exchanger to prevent

an expansion below the triple point. This would occur if the exhaust line from the heat

exchanger was dueted directly to the vacuum environment of space. The valve can also

be a flow limiting device which will improve system operation. The fluid state down-

stream from the heat exchanger will always be gas, whether gas or liquid enters the

expansion valve. The pressure at the flow limiting orifice will be maintained at a con-

stant value of approximately 4 psia. For all conditions, the vapor will be within a few

degrees of tank temperature. Thus, the orifice will ensure that the flow through the

system will be essentially constant, whether gas or liquid enters the expansion valve.

This, then, allows the heat exchanger cold-side flow rate to be closely matched to sys-

tem requirements.

The pressure regulator which will control the pressure to 4 psia is shown schemat-

ically in Fig. 1-16. The regulator contains a large integral filter to protect the poppet

and seat from particulate contamination. The flow through the valve is modulated by
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L_

the bellows which is exposed to regulated downstream pressure. Weights and sizes

of the valve as a function of valve inlet pressure are illustrated in Figs. 1-12 and 1-13.

Thermodynamic performance of any of these valve concepts is shown in Figs. 1-17

and 1-18 where the temperature drop and vapor quality for liquid hydrogen are presented

as a function of propellant tank pressure and valve pressure drop. For Missions (1), (2),

and (3),the expected temperature drop across the valve will be about 8°R. The vapor

quality will be about 10 percent.

Expansion Turbine. The use of a turbine to expand the saturated liquid offers no

advantages over the use of a valve. It may be noted that since the inlet condition to the

expansion unit is saturated liquid and the outlet condition is two-phase, the outlet tem-

perature will be the same for both units operating over the same pressure range. From

a thermodynamic viewpoint, the outlet quality may be slightly lower for the turbine.

This will have a negligible effect on the heat exchanger and on the flow rate through the

thermal conditioning system. Although there are no real advantages in using a turbine,

there are many disadvantages, such as:

• There is no simple way to control the system to ensure maintenance of a given

outlet pressure.

For the maximum intermittent flow rates considered (60 lb/hr), the volumetric

flow is more than an order of magnitude below that for the smallest turbines

built (0.4 in. diameter).

Liquid turbines are usually designed to ensure that no vapor flashing occurs in

the turbine. Here, the design point is a unit to ensure that flashing does occur.

This results in a unit that cavitates, tends to erode, and has extremely low

efficiency.

• The net work output from the unit is negligible, and in a speed range not directly

usable for driving a mixer unit.

In summary, when compared to an expansion valve the disadvantages of using a turbine

device as an expansion unit are sufficient to exclude it from further consideration.
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Heat Exchanger Unit

The heat exchanger must be capable of transferring to the vented propellant the energy

conducted into the propellant tank from the exterior through insulation, plumbing, and

support structure, as well as any heat put into the tank to drive the rotating parts of

the system. The refrigeration produced by the expansion unit provides the temperature

difference for heat transfer. The necessary heat transfer may be accomplished with a

compact heat exchanger or with a tank-wall heat exchanger. Each method is treated

separately in the following.

Compact Exchanger. The flow phenomena in boiling and condensing hydrogen within a

compact heat exchanger is usually envisioned as annular flow at low fluid quality and

mist flow at high fluid quality. For annular flow, a layer of liquid hydrogen is attached

to the walls of the flow passages and high heat transfer coefficients are obtained. For

mist flow, the liquid phase exists as small droplets in the central region of the flow

passage. Here, the heat transfer path is from the wall through a hydrogen vapor layer

and then to the liquid, resulting in lower heat transfer coefficients.

Two computer programs were developed to predict boiling heat transfer coefficients,

and another program was written to evaluate the two-phase pressure drop. The heat

transfer coefficients in the annular flow regime were developed using Chen's correla-

tion (Ref. 3), and typical results are shown in Fig. 1-19. Hendrick's correlation

(Ref. 4) was used in the mist flow regime, and typical results are shown in Fig. 1-20.

A review of the literature indicated that the correlation of Hendrick was the best avail-

able for calculating the heat transfer coefficients in the mist regime. In this study the

transition from annular to mist flow was assumed to occur at 50-percent quality. The

location of the transition point is conservative based on experience and tests of various

investigators. For example, Ref. 5 reported a design and successful test of a remote

storage evaporative oil cooling system for aircraft assuming an 80-percent transition

point. The computer program for calculating the two-phase regime pressure drop was

based on Martinell's correlation (Refs. 6 and 7_. The correlation is independent of

flow mechanism and is applicable to both boiling and condensing fluids. Since the

correlation is for local pressure gradients, an integration must be performed to
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obtain the overall pressure drop along the two-phase flow passage. The computer

program uses a numerical integration method and includes momentum changes to

•determine the overall pressure drop.

Before evaluating heat exchanger performance characteristics, a short analysis was

made of the interactions between the expansion and heat exchange units and their effects

on heat exchanger requirements. Figure 1-21 is a pressure-enthalpy plot which shows

two possible thermodynamic paths for the process. Starting with saturated liquid at a

pressure of Pl ' various paths can be used to reach the final saturated vapor pres-

sure P3 by controlling the expansion valve outlet pressure P2 " With large values

of P2/P1 , the temperature difference between the fluids is small while the allowable

pressure drop is large. As the value of P2/Pl decreases. Thus, at some ratio of

P2/P1 , a minimum size heat exchanger can theoretically be obtained with a given

value of P3/P1 . The effect of the expansion valve pressure ratio on the heat ex-

changer size over the wide pressure range from 17 to 135 psia is shown in Fig. 1-22.

The value of the ordinate is an indication of the size of the heat exchanger. It can be

seen that the ratio of PJP1 should approach P3/P1 to obtain small heat exchangers.

Thus, the major pressure change should take place in the expansion valve, not in the

heat exchanger.

A counterflow plate-fin heat exchanger was used as the basis for comparison. The

general configuration of this type of heat exchanger is shown in Fig. 1-23. This con-

figuration has better flow distribution than a crossflow heat exchanger. The evaluated

units are made of stainless steel using 20 rectangular fins per in. The fins are offset

and are 0.004-in. thick. The hot side fins are 0. 075-in. high with an uninterrupted

length of 0.15 in. The cold side fins are 0. 050-in. high with an uninterrupted length

of 0. I0 in.

The number of transfer units (NTU), which indicates heat exchanger size, is given by:
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where E is the heat exchanger effectiveness. An effectiveness of 0.9 was selected

for the parametric study. This value of effectiveness gives a good balance between

heat exchanger weight and hot side pumping power. A lower effectiveness value such

as 0.8 could have been used which would result in a lower heat exchanger weight at

the cost of increased pumping power. The best compromise of heat exchanger weight

and pumping power is generally evaluated for the conditions and requirements of a

specific application. Such an evaluation and optimization has been applied in this

study to the thermal conditioning system selected for the reference missions,and is

presented and discussed in later sections of this report. For an effectiveness other

than 0.9, the change in NTU (and size) can be approximated by:

ANTU AE

NTU

Heat transfer coefficients are compared in Figs. 1-24, 1-25, and 1-26 for helium,

gaseous hydrogen, and liquid hydrogen. These are determined from dimensionless

experimental heat transfer data that are available on the fins depicted in Fig. 1-23.

Using helium vapor as the warm side fluid generally results in the largest heat ex-

changer and largest pressure drop because helium will not condense at the pressures

and temperatures under consideration. In addition, for a given warm side mass flow

rate, the helium coefficients are lower than the gaseous hydrogen coefficients. Thus,

a heat exchanger designed for helium gas only will yield a conservative design.

The parametric study considered three tank pressures (17, 50, and 150 psia) and three

expansion ratios between the expansion valve inlet and heat exchanger outlet (approxi-

mately 0, 1, 0.5, and 0.9). Thus, for a given heat load and warm side fluid, nine

different cases were evaluated. The boiling hydrogen undergoes no substantial change

in temperature or pressure but a substantial change in quality (outlet quality = 1.0)

in the heat exchanger. Helium had a nearly linear temperature decrease along the

flow passage.

As can be seen in Figs. 1-19 and 1-20, the two-phase heat transfer coefficients are, in

general, a function of temperature, mass flow, temperature difference, and local
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i

quality. As a result, determination of the heat exchanger size required step-by-step

integration as well as iteration. The analysis proceeded by first dividing the heat

exchanger into several sections. A wall temperature was assumed and the boiling side

heat transfer coefficients were calculated (Figs. 1-19 and 1-20), the warm side heat

transfer coefficient was determined (Figs. 1-24 and 1-26), and the fin effectiveness on

the warm and cold sides was calculated. The assumed wall temperature was varied

until the following equation was satisfied:

(_A)h (T h - Tw)

h c = h h (T1A)c (T w - Tc)

The product of the required overall heat transfer coefficient and the area for a given

heat exchange section is:

UA = (NTU)Ch = Ch in (1---_)

The size of the heat exchanger area for a particular section is

A h = (UA)

A_hh
A

c 1

The above procedure is repeated for each section of the heat exchanger to determine

the size of the unit. The results are shown in Figs. 1-27, 1-28, and 1-29 with helium

as the warm side fluid and in Figs. 1-30, 1-31, and 1-32 with liquid hydrogen as the

warm side fluid.

The results were obtained by designing a heat exchanger for a given condition ( P1 '

P2/P1 , and heat load) as described above. The frontal area was then varied for

various heat loads to hold the mass flux (lb/hr-ft 2) constant. This approach resulted

in a series of heat exchangers which have the same length and pressure drop for a
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given P2/P1 and Pl " It can be seen that the heat exchanger weight and size

increase tremendously as the temperature drop across the expansion valve decreases,

i.e., as P2/P1 increases. The heat exchanger weight and size increase sharply as

the expansion ratio exceeds 0.6, and approaches infinity asymptotically as the pressure

ratio approaches unity. It should be noted that the heat exchanger weights shown are

core weights and do not include manifolding or special packaging requirements. These

considerations may result in a 25 percent increase in the weight of the unit.

The weight and size are larger for a given pressure ratio at lower pressures. The

same general results were found for the helium pressure drop on the hot side (Fig. 1-29).

The pressure drop on the cold side (boiling hydrogen) was negligible. The maximum

pressure drop at the highest expansion ratio )0.96) and lowest pressure (17 psia) was

only 9 in. of water.

It can be seen that relatively light-weight, small size heat exchanger cores are re-

quired for any of the reference missions (Table I-l) which have heating rates less

than 1000 Btu/hr. For a heat transfer rate of 1000 Btu/hr, heat exchanger cores

of about 5 to 6 lb and 70 to 80 cu in. are needed. The compact heat exchanger there-

fore is a very effective unit for a liquid propellant thermal conditioning system.

Tank WallHeat Exchanger. The tank-wall heat exchanger is basically a finned tube,

with the tank skin as the fin. Figure 1-33 shows a typical tank-wall heat exchanger

applied to a Mission (2) vehicle. Theoretically, the tank-wall heat exchanger is appli-

cable to either continuous or intermittent operation. Thus, tank pressure control,

whether continuous or intermittent, must consider the requirements of or condens-

ation of hydrogen vapor within the propellant tank.

A tank wall heat exchanger can be a tube continuously attached to the tank wall through-

out its length, or attached to pins at discrete points on the tank surface. When the

tube is attached continuously, and the heat transfer coefficient between the propellant

and tank wall is high, most of the vaporization can occur in a relatively small portion

of the tube. Consequently, nonuniform cooling of the propellant would result. If a

high thermal resistance, which is not affected by the propellant conditions, is inserted,
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it can control the heat flow into a segmentof the tube; thus, spacing these point resis-

tances uniformly over the tank tends to ensure more uniform heat transfer and vapor-
ization and should result in more effective pressure control. Therefore, the point

attachment method is preferred over the continuous attachment method.

For the discrete point contact, all of the heat is conducted into the pin, of radius a,

as shown in this sketch.

The differential equation describing the temperature distribution in the tank wall is:

d2T 1 dT
+---- + _t (T- TB)

dr 2 r dr
+ q = 0 (i)

To get a closed form solution of this equation, it must be assumed that the heat

transfer coefficient between liquid and tank wall and other heat flux is constant over

the tank surface. Also, the following two boundary conditions are necessary:

dT
m=0atr=
dr

Oo

T= T at r= a
n
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The first condition is obvious. The second merely defines, arbitrarily, other tempera-

ture at the base of the pin as some constant, T n . Its relationship to known tempera-

tures is shown later. The assumption of constant h , and the above boundary conditions

give the following solution to the differential equation:

Ko(r¢fl)

(T - W*) = (Wn - W*) K (a_ffl) (2)
O

However, it is conservative to assume q/Ah <<

conducted to the base of the pin is given by

T B , in which case the heat

Kl(a/-_)

Q = 2w Kw t w a¢_3 (T n - TB) K (acre) (3)
O

This equation is plotted in Fig. 1-34. The heat conducted into the base of the pin must

be transferred into the vented propellant flowing in the tube. This fact can be used to

evaluate T If the resistance in the pin is negligible, then
n

Q = h. A t - (4)1 (Tn To)

Equating these two gives

- T Kt t K l(aTn o w

- T B h. A x TTacr_ Ko(af_Tn
(5)

A tank-wall heat exchanger can be divided into evaporator section an a superheater

section. In an evaporator where the boiling heat transfer coefficients are very high

(Fig. 1-35) relative to the conductance in the tank wall, this ratio is much less than 1.

Therefore, by making the approximation Tn To, Eq. (3) becomes:
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Ki(a_)

Q = 2_K wt w(T O - TB) a_ Ko(a 4fl)
(6)

In the superheater section, the heat transfer coefficients in the tube are one to two

orders of magnitude smaller than the boiling coefficients (Fig. 1-36) and T n _ T o.

Therefore, the general Eqs. (3) and (5) combine to give a more complex expression for

the heat transferred at a pin; this is

Q = 2rz Kw tw (T O

K_(a vf_)

- TB) avf_ Ko(a.vf_)

1

Kw tw r^ Kl(aJ'_

1 + hi Ai [zua_ Ko(a4-_)

(7)

In the superheater, the temperature of the vented propellant is different at each pin,

giving a nonsymmetric temperature distribution around each pin. Simultaneously
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accounting for nonuniform gradients in the tank wall and a varying sink temperature is

an intricate situation requiring that both the wall and the fluid be broken into a nodal

network and solved by iteration. This complexity was not pursued.

When only evaporation is being considered, the vent fluid temperature is constant at

every point, and the heat transferred at each attach point is the same. Therefore, the

total number of pins required for complete vaporization of the vented propellant is

given by

f

N = Kl(a ¢f_)

2rr Kw t w (T O - TB) a¢_ Ko(a, f_ )

®x (s)

These pins must be uniformly spaced over the tank surface and connected by the heat

exchanger tubing, in which case the total length of tube is given by

1/2

L

K 1 (a ¢f_

2_ Kw t w a¢_ (T O - TB) Ko(a

(9)

Equation (9) is shown in dimensionless form on Fig. 1-37. Using this relationship,

one can determine the tube length for a given vent flow rate and tank if the heat transfer

coefficient between the propellant and the tank wall is known. If a mixer is used,

then the coefficient is a function of the velocity created by this device along the tank wall.

Note that these heat transfer analyses determine only the tube length, with no apparent

dependency on the diameter. This is a direct consequence of the assumption that the

thermal resistance inside the tube is small compared to that in the tank wall. However,

even for such conditions the pressure drop considerations determine the tube diameter,

after which the tube weights can be found.
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The method of calculating pressure drop in the tank wall heat exchanger tube with two-

phase flow uses a modification to the Lockhart-Martinelli correlation which accounts

for the continuously changing quality of the fluid. Lockhart and Martinelli defined the

modulus

g

(dP/d£)TPll/2

(dP/d%)g J
(i0)

i

and they assumed that could be correlated by the modulus
g

-(dP/d£)£1

(dP/d£)gJ

1/2

(11)

which reduces to

\1/2/.×: tpg/p ) (12)

The total two-phase pressure gradient can be related to the pressure gradient of

saturated vapor.

APTp APTp pAP
_ g _ _2 xl..8

A Pl00 A Pg A PI00 g
(13)

Using the conventional Fanning equation for pressure drop when all saturated vapor is

flowing gives

A(__)1 = 32f w 2
00 D5 gc rr 2 Pg

(14)
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Therefore,

: 232,.2I0 glx18I.
TP _ gc Pg

(15)

Since this is the local gradient, based on local quality, integration between entrance and

exit qualities is necessary to get the total pressure drop. The resulting equation for

hydrogen is

x ?= _2 1.8
TP D 4. 8 g x (16)

x I

/
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The integral is plotted in Fig. 1-38 as a function of pressure. From this expression

and that for the required tube length, the tube diameter, and thus the weight of the tank-

wall heat exchanger, can be found.

The weight of the tube is given by

W t = TT Pt tt DL

Rearranging Eq. (16) to solve for D , and then combining with Eq. (9), the final

expression for tube weight becomes

W t

W
- 17 Pt tt_

A X
S

K 1 a_

2_ Kw t w (W o - WB a¢_ K a_f_
O

0.6

x 2

S.8_2 1 8.57 (10-7)To g x "

x 1

PAP

0.21

(17)

(18)

If the entrance and exit pressures are selected, the temperatures and quality integral

are fixed. The tank wall, tube wall, and fluid properties are fixed, then Eq. (18) re-

duces to the functional relation

W t
- a ¢r-_) (19)f(P, hP, A s ,

d)

These tube weights are shown parametrically in Figs. 1-39 through 1-42, wherein a

stainless steel tube of 0. 006-in. wall thickness is assumed.
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Fig. 1-41
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In the development of this analysis, it was assumed that the heat transfer coefficient

was uniform. If the mixer discharge is not contained, the velocity and heat transfer

coefficient decay with increased distance from the discharge point. For conservatism

the lowest value on the wall should be used. One can achieve a constant heat transfer

coefficient by channeling the mixer discharge flow along the wall with an internal

shroud. The weight of such a shroud is shown in Figs. 1-43 through 1-45 for Missions

(1) through (3), respectively. It can be seen that the weight of the shroud overshadows

tube weight if it extends a significant way up the tank. However, the tank-wall heat

exchanger, like the compact heat exchanger, can be concentrated locally, since success-

ful operation depends upon mixing of the propellant. For example, the necessary

tubing might be concentrated over the lower 10 percent of the Mission (2) vehicle, and

this requires only 4.7 lb of shroud.

a

A preliminary design study was conducted to establish the additional weight involved

for proper attachment of the heat-exchanger tubing to the tank wall. Direct bonding

with an adhesive appears to be the lightest installation. However, repeated experience

indicates that such adhesive bonding directly to aluminum liquid hydrogen tanks is un-

reliable with currently available adhesives. Consequently, it was decided to weld

aluminum clamps to the tank at properly located attach points. These clamps then

secure the tube in place. This attachment technique requires small circular weld

lands, uniformly spaced over the tank. The results of this preliminary design effort

indicate that the combined weight of weld lands, clamps, and tube fittings is twice that

of the tube found from Figs. 1-39, 1-40, and 1-41. Therefore, the heat-exchanger

weight is approximately three times that obtained from these figures.

A comparison of the weights of a tank-wall heat exchanger and a compact heat ex-

changer show that there is no significant weight advantage of one over the other. For

example, from Fig. 1-27, a compact heat exchanger designed for a vent rate of 1 lb/hr

(190 Btu/hr) at a tank pressure of 17 psia will weigh approximately 1.1 lb. From

Fig. 1-41, a tank wall heat exchanger will weigh approximately 3.5 lb for the Mission

(2) vehicle. Selection of the appropriate heat exchanger unit for the thermal condition-

ing system therefore must be made on other bases. The heat exchanger must be inte-

grated into the insulation or thermal protection system of the liquid hydrogen tank

(Fig. 1-33).
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In the event of small leakage of hydrogen gas from fittings, joints, and from the tubing

itself, a degradation in the effectiveness of the thermal protection system will occur.

In fact small gas leak rates large enough to increase the interstitial pressure within

the insulation to greater than 10 -5 torr vacuum will rapidly cause the thermal pro-

tection system to lose its insulative properties. Such leaks may easily occur in a

tank-wall heat exchanger during launch and ascent vibration and acoustic loading.

With a compact heat exchanger mounted inside the propellant tank such leaks are of no

consequence.

Also in the event a leak or malfunction in the tank-wall heat exchanger is detected

during stage assembly, erection, or ground-hold check-out, a large-scale disassembly

of the thermal protection system, instrumentation, and other associated subsystems

would be required to effect a repair. The repair would have to be made with the vehicle

in place on the launch pad. If this were impractical, then the complete stage would

have to be removed and replaced with a new stage. The contrast in magnitude of such

a repair operation is sharpened when compared to the simple replacement of a 10 to

15 lb thermal conditioning unit having a compact heat exchanger mounted on the inside

surface of the easily removed and replaced man-hole cover of the tank.

Because no advantages could be defined for the tank-wall heat exchanger, but several

significant and very real disadvantages were defined, no further work on the tank-wall

heat exchanger was conducted. On these bases, the compact heat exchanger unit con-

cept was selected for the thermal conditioning system.

#

Flow Regulator Unit

It is necessary to control both the flow rate and the pressure in the cold side of the

heat exchanger so that the heat loads and the available temperature difference are

known. If the pressure regulator shown in Fig. 1-16 is used, then a flow regulator

placed downstream from the heat exchanger is required in the system. Such a device

is schematically shown in Fig. 1-46.
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This valve unit consists of a solenoid valve with a current limiting assembly located

outside the propellant tank. The current limiter is a semiconductor device which will

allow a high current to pass for 300 to 500 ms to allow the solenoid to pull in. The

current then drops to a low value (about 30 ma) to hold the solenoid valve in the open

position. With this approach, no coil compensation is necessary to limit current flow.

The resultant holding power requirement is maintained below 1 w.
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The flow limiting orifice diameter will be approximately 0. 065 in. A filter will be

placed downstream of the heat exchanger to prevent particles from plugging the

orifice. A built-in filter, as noted previously, will be placed on the pressure regu-

lator (Fig. 1-16) to prevent possible particulate contamination from the propellant

tank. The weight of the flow regulator unit is about 1 lb.

Mixer Unit

A mixer unit may be required in a thermal conditioning system for one or both of

two reasons, as follows:

• To provide the necessary convective velocities through the hot side of the

compact heat exchanger

• To provide sufficiently high fluid velocities within the tank to cause hydrogen

vapor condensation of bubbles formed by boiling at hot spots on the tank wall

wall

t

j*

The appropriate mixer characteristics are those fulfilling the severest requirements

imposed by either of these reasons. In this section of the report, the parametric

data covering a wide range of performance for the mixer unit are presented. Specific

matching of the mixer unit to the conditions referred to above are treated in later

sections of this report.

One of the basic parameters used to determine operational characteristics of the

mixer is the specific speed (Ns) which is defined here (using pump terminology) as:

N S -
(n) 3/4

The weight and volumetric flow rate and the fluid head and exit velocity are mutually

convertible. In Fig. 1-47, the weight flow is plotted as a function of the ratio of

specific speed to rotational speed with the fluid exit velocity as a parameter. The

relationship between the efficiency and the specific speed for various mixer configu-

rations is shown in Fig. 1-48. These curves were obtained from various data on

pumps. The efficiency values shown are the achievable average values for
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i

the different types of machines operating within the ranges noted. The efficiency of a

mixer designed for operation in liquid will be decreased when operating in a two-phase

mixture. The dotted line in Fig. 1-48 is the estimated efficiency envelope for two-

phase flow at 50 percent quality. Although a given type of machine can operate over

a wide range of specific speeds, it is desirable to design the type of unit which experi-

ence has shown to be the most efficient for a given specific speed. For very low

specific speeds a pitot unit with a rotating housing is used. The internal blading is

designed to produce a solid body of rotating fluid within the fluid housing. Inside the

housing one or more pitot tubes are installed with the tip located at the extreme dia-

meter to collect the high pressure rotating fluid. The pitot passes through the housing

along the centerline. In the Barske unit, the impeller has radial vanes and fits in the

housing with a relatively large clearance. Here also the fluid rotates as a rigid body

and is delivered through relatively narrow jets in the housing. In the eentrifugal units,

the flow is radial and the required pressure rise is obtained by imparting a centrifugal

force to the fluid. In the axial unit, the flow is, of course, axial to the center of rota-

tion and this type unit is generally used to obtain high volumetric rates with a small

pressure rise. For speeds in the 5000 to 10,000 range the mix flow design is used.

Here the flow is partially axial and partially radial to the center of rotation of the

impeller.

The efficiency envelope shown is valid for Reynolds numbers greater than 106 . If the

Reynolds number is below 106 , the efficiency will be decreased significantly for low

specific speed machines but only slightly for high specific speed units. The Reynolds

number Re is defined as:

DU
Re =_

_)

r

Once the ratio of the specific speed and the rotational speed is obtained from Fig. 1-47,

the variable that must be determined is the rotational speed. This can be determined

by choosing an appropriate specific speed range that results in high efficiency

(Fig. 1-48). The rotational speed and rotor size must then be evaluated with respect

to the required operating conditions. Figure 1-49 is a working chart showing the

relationships between rotational and specific speeds.
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4.

The diameter of the rotor (D, in in. ) is

D =
720 U
NTT

where N is the rotational speed in rpm. Figure 1-50 is a working chart showing the

relationships between N, U , D , and fluid exit velocity V.

To determine the tip speed, the head coefficient, defined as H/U2/g , must be

evaluated. For different blade design and efficiencies, there are corresponding

values of head coefficient , . The usual ranges of head coefficient are 0.6 to 0.8

for radial blading and 0.4 to 0.6 for backward blading. Radial blading is used in

machines with low specific speeds (Barske and pitot) while backward blading is used

for large specific speed machines such as centrifugal and axial machines. Two

lines, A-A' and B-B' , are superimposed on the D-U-N map of Fig. 1-49, for

values of 0.5 and 0.7 . These lines represent the average values for backward

and radial blading, respectively. With a given fluid exit velocity and blade design,

the tip speed can be determined from Fig. 1-50. The diameter of the rotor is deter-

mined by moving horizontally from the ordinate (tip speed) to the rotational speed

and then moving vertically.

It is desirable to obtain Reynolds numbers in excess of 106 . This requirement gives

rise to two conditions which are also functions of vapor quality, namely:

DU > 23. Sfor X = 0percent

DU > 346 for X = 50 percent

Two lines, C-C' and D-D' , corresponding to the equality signs of the two con-

ditions, are superimposed on the D-U-N map. To ensure good performance, the

chosen rotational speeds should fall to the right of the C-C' and D-D' lines.

Figure 1-51 shows the power required to accelerate the fluid to the given velocity

as a function of flow rate. The overall shaft power required for the mixer is:

shaft power = power to accelerate fluid
(n X) (_mech }
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Fig. 1-50 Mixer Tip Speed and Rotor Diameter
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where _X is the hydraulic efficiency at the inlet quality and _mech is the overall

mechanical efficiency. For the range of the parametric study variables, the power

to accelerate the fluid is negligible, as shown in Fig. 1-51. For example, the maxi-

mum power for the range is only 0.06 w. The actual shaft power will be much greater

due primarily to losses associated with bearings and windage. As the power required

to accelerate the fluid increases, the mechanical losses become proportionally smaller.

Thus, intermittent operation of the mixer with high flows and velocities will improve

the overall performance of the unit.

The parametric evaluation of the mixer unit also includes the evaluation of the drive

device. This may be either an electric motor or a turbine. The results of the

parametric evaluation of the drive devices are discussed below.

F

Electric Motors. The four types of electric motor drives initially considered for the

parametric study were 400- and 2000-cycle ac and brush and brushless dc. It was

found that the 2000-cycle ac motor would require heavy conversion equipment and

offered no real advantages over the 400-cycle ac motor. For the present study with

missions of up to 220 days, conventional brush dc motors are not satisfactory because

of life and reliability limitations. Thus, the final parametric study evaluated 400-cycle

and brushless dc motors. Brushless dc motors which use photoelectric commutation

are now in production. The infrared cell used in the photoelectric pickup loses its

sensitivity at liquid hydrogen temperature and therefore photoelectric commutation is

not suitable for application in liquid hydrogen. However, the motors can be adapted

to liquid hydrogen by changing to an induction coil pickup and using induction rather

than photoelectric commutation. This type of motor, specifically designed for use

at liquid hydrogen temperatures, has many advantages and is discussed below.

Figures 1-52 and 1-53 show the weight and volume of 400-cycle ac and brushless dc

motors as a function of power output level. The weight of an electromagnetic clutch to

transmit the motor output results in roughly a 10 percent increase in the weight and
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volume of the motor. The ac motor weight and volume do not include an inverter,

which would be required if only dc power was available. Direct current power is gen-

erated by fuel cell and solar cell systems while ac power is generated by a radioisotope

system. The efficiency of the two types of motors is shown in Fig. 1-54.

The use of an inverter with the ac motor will reduce the overall efficiency to approxi-

mately 80 percent of the values shown. As can be seen from the figures, the brushless

dc motor is somewhat larger and heavier and more efficient than the ac induction motor.

If a motor is to be placed in the hydrogen tank, a brushless dc motor is recommended

because of its higher efficiency. The higher efficiency significantly reduces the heat

input to the tank as shown in Fig. 1-55. This is especially important for those missions

with low tank heat leaks.

Small brushless dc motors are now in production which operate at efficiencies previously

thought to be impossible. Figure 1-56 shows the characteristics of a brushless two-

speed motor now in production. The motor operates at room temperature and, despite

its dual-speed characteristic which reduces performance, overall efficiency is 76 per-

cant at the design point. Operation at cryogenic temperature will reduce various

electrical losses considerably and will result in higher performance than that obtained

at ambient temperatures.

Turbines. The basic configuration selected for all drives consists of a single-stage

axial-impulse turbine wheel, with either full or partial flow admission, supported by

a set of gas bearings. The bearings considered are foil-type and have the important

feature of being inherently stable at any speed. The basic bearing configuration has

been developed and successfully used in several small cryogenic turboexpanders.

It is extremely important to determine the most efficient turbine configuration for the

given system operating conditions. Since the hydrogen flow rates to be considered are

very low as well being at saturation temperatures, miniaturized turbine configuration

technology must be applied. The required small turbine sizes may be partially com-

pensated for by increased rotational speeds. However, an increase in rotational speed

is accompanied by increased bearing and windage losses. Thus, the overall turbine-

drive performance must be considered in the selection of turbine size and speed.
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4,

t

Based on analyses and experience with a wide variety of turbines (illustrated in

Fig. 1-57) including axial, radial, and reentry types (both impulse and reaction), an

axial-impulse design has been selected to best meet the turbine-drive requirements.

An axial wheel was selected rather than a radial wheel to avoid the possible problem

of a radial-wheel centrifugal field throwing liquid droplets back into the nozzle causing

erosion.

Impulse turbines can be designed as axial- or radial-inflow machines. The two types

have equal performance capability and the same fabrication techniques can be applied.

In impulse turbines, most of the available pressure ratio is used in the nozzle. Little

pressure difference exists across the rotor. Therefore, flow leakage and problems

associated with axial thrust balancing are essentially eliminated. Some of the other

turbine types studied for potential application are discussed below.

A radial-inflow reaction turbine is essentially a 50-percent reaction machine where

half of the flow expansion takes place across the nozzle and the remainder takes place

in the rotor. Because of the pressure gradient across the rotor, an exducer shroud

seal is required to minimize flow leakage. Nonrubbing labyrinth seals must be used.

The leakage flow through the finite seal clearance becomes quite substantial for low

flow designs, such as the hydrogen turbines considered here. For reliable low-loss

gas bearing operation, an additional seal must be installed on the back side of the disk

for axial-thrust balancing reasons contributing further to leakage losses. In addition,

the maximum efficiency of a reaction turbine occurs at a speed about 45 percent higher

than that required by an impulse turbine. The increased bearing losses associated with

these higher speeds tend to offset any increase in efficiency. The performance potential

for this type of wheel design has not been thoroughly investigated for a partial-admission,

high head design. The performance range would be expected to be somewhere between

a single-stage axial design and a spot-faced turbine, although the turbine assembly

weight may be higher.

The spot-faced impulse wheel (shown in Fig. 1-57) has been used in several low-power,

short-duration power units. The use of this type of wheel allows the design of an
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Fig. 1-57 Various Types of AiResearch Turbines 
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extremely simple, lightweight, and rugged turbine assembly. However, the efficiencies

of present wheel designs are somewhat lower than can be achieved with other types of

designs.

Terry-type turbines are almost always a partial admission turbine. The basic flow

and performance parameters are similar to a single-stage axial turbine. The bucket

design is difficult, however, and it is doubtful if this turbine can show superiority over

a conventional axial-flow design. In addition, there are little existing data for small

turbine designs.

The drag turbine is essentially a multistage, single-disk design. No stator vanes are

provided, and the turbine blades are radial fins. Although the flow process is fairly

well understood, there is a lack of empirical data for this design. Drag turbine

efficiencies, in general, are lower than an equivalent axial design for a given specific

speed.

A reentry turbine allows multistage design on a single disk. The first stage normally

acts on a small arc of admission, and the exit fluid from this stage is guided into a

duct which carries the fluid back up and over the top of the blade row and into the nozzle

of the second stage. The reentry design offers the potential of reduced windage and

blade pumping losses over the convential axial-flow design. The full arc can be used

to eliminate idle blade losses. This type of design can provide high efficiency, if the

leakage losses can be minimized. Four or five stages seem to be the limit of expan-

sion before losses exceed the gain from improved efficiency. It may be difficult for

this type of design to actually exceed a multistage axial design in efficiency. This type

of turbine is most applicable to much higher energy levels than available from saturated

hydrogen.

!Bearings. The successful development in several applications have proved the feasi-

ibility of utilizing gas-lubricated bearings for high-speed, long-life turbomachinery

components. Two basic types of gas bearings -- the hydrostatic and hydrodynamic con-

figurations - have been used successfully. The hydrostatic type was eliminated from

further consideration for the hydrogen turbine drives, since an auxiliary supply of
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W

pressurized gas is required. With the hydrodynamic bearing type, the pressure re-

quired for supporting the load is generated in the small gap between the rotating and

stationary bearing surfaces.

The requirements of the gas bearings are:

• Stable operation during startup and at the desired rotational speed

• Sufficient radial and axial load capacity to support the forces imposed by

the shaft

• Low power consumption

Dynamic instabilities that are pertinent to machines supported by hydrodynamic fluid

film bearings can be divided into three broad classes, those due to: (1) the system

critical speeds, (2) the nonsynchronous whirl often called half-frequency whirl, and

(3) the resonant whip. The critical speeds usually have no damaging effects unless

they occur at or near an operating speed. The damping associated with fluid film

bearings permits the rotor to accelerate through the first and second critical speeds

with relatively small amplitudes of excitation, if the proper bearing stiffness is used.

The bearing mounts must be designed not only to keep the first and second critical

speeds far from the operating speeds but also to keep them low to further decrease

bearing loads. In addition, the third critical speed must be placed somewhat above

the operating speed.

At relatively low speeds, a lightly loaded rotor that has been displaced from the

equilibrium position will take a spiral path in its return to the equilibrium point. This

whirling type of path results from the tangential component of the fluid film force. The

whirl frequency, under certain conditions, can approach one-half of the rotor speed.

In this case, the bearing load capacity becomes zero and bearing failure will occur.

Serious consideration must also be given to resonant whip. This condition exists where

the tangential component of the fluid film force excites the system critical frequency

and the rotor whirls at the critical speed while spinning at a much higher speed. Since

the mean fluid velocity is approximately one-half the shaft speed, the fluid is not cap-

able of exciting this type of vibration at spin speeds below approximately twice the
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system cr_;ical speed. Loads, either static or rotating, forcing the bearing to oper-

ate at a high eccentricity ratio, will suppress this type of vibration.

A wide variety of gas bearing configurations may be found in the literature. These

range from simple cylindrical journal bearings to grooved journal bearings, journal

bearings operating in elliptical journals, and bearings operating on pivoted tilting pads.

All of these, with the exception of the tilting pad bearing, are susceptible to half-

frequency whirl instability. Another bearing type is the foil bearing. Here, the foil

is wrapped about the rotation journal and the load is supplied by the sum of the tension

forces. The foil may be made of any of several flexible materials. A configuration

which has been successfully applied to cryogenic turboexpanders is the conical over-

lapping foil bearing (Fig. 1-58}. In turboexpanders, cone bearings of 3/8 in. in diameter

have been run at speeds to 450,000 rpm. In this type of bearing, the shaft, which includes

a conical section on either end, runs in conical journals. Foils are installed in the

region between the two conical surfaces. The foils are attached at one end only and

are arranged such that adjacent foils overlap. Conical bearings have the advantage

of being capable of accepting both radial and axial loads. With cylindrical journal

bearings, only radial loads are supported. A separate thrust bearing is then neces-

sary to carry axial loading. The actual bearing configuration for a turbine drive can

be established only after a detailed design study considering all environmental

requirements.

Turbine Characteristics. The configuration selection and performance of the turbine

for this application are determined by many variables. The primary design items

which effect turbine performance are:

• The throughflow rate

• Available head for expansion

• Turbine wheel tip speed

• Rotational speed

• Degree of flow admission in wheel

• Manufacturing tolerances

• Supersaturation of expanded vapor

• Condensation of the vapor within the turbine

• Bearing and windage losses
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Considering similarity relationships, the efficiency of the turbine is basically a

function of the following:

t = f (Re , M, N S, po/Pi , k)

The specific heat ratio, k, affects the turbine performance through the influence on

compressibility factors. The other effect of k is in its effect on the turbine velocity

vectors with changing density ratio across the turbine. Unless the density ratio re-

mains the constant, the velocity triangles in the turbine passages are modified.

The Reynolds number may also affect turbine performance. There is a certain critical

Reynolds number (about 106 ) below which the turbine performance is adversely affected.

However, in the range of operation of the subject hydrogen turbines, the Reynolds

number effect is small.

Operating at low temperature reduces the velocity of sound. As the tip speed is still

high, the possibility of encountering supersonic Mach numbers remains with high-

speed miniature turbines. Within a range of Mach numbers up to 1.2 to 1.4 (at the

nozzle exit}, the effect of supersonic operation can be taken into the design so that

only a slight decrease in performance takes place. At higher Mach numbers, a

larger penalty in performance can be encountered.

In a review of the data of existing miniature turboexpanders (down to a diameter of

5/16 in. ) operating in low temperature refrigeration systems, it is found that:

(1) most of them operate within a range of Reynolds number which is not too far from

the critical Reynolds number (106), (2) most operate within a common range of pressure

ratios and density ratios, and (3) the operating Mach number is not high enough to cause

a significant penalty in performance.

With these operating conditions, the similarity relationship can be written as

T1t = f (N S)
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This relationship does not introduce any parameter that accounts for the tolerance

control or the manufacturing techniques leading to a good fabrication of miniature

designs. Thus, for the current study, the physical diameter of the turbine D T has

been included as a design parameter so that generalized performance can be shown for

_t = f (Ns ' DT)

This performance is shown in Fig. 1-59.

An additional study was made for an axial turbine design similar to the type that would

be used for the turbine drives. A typical design pressure ratio of 10/1 was selected.

The calculated performance of this turbine is shown in Fig. 1-60. Also shown on the

curve are the effects of partial flow admission in the nozzle stator, down to I percent

admission. The performances shown in Figs. 1-59 and 1-60 were compared. This

indicated that the performance shown in Fig. 1-59 was 4 to 5 percent higher than that

shown in Fig. 1-60. Consequently, for the analysis and studies, the performance of

Fig. 1-59 was downrated by a factor of 0. 958.

Turbine Bearing and Windage Losses. The performance of any gas bearing system is

a complex function of the bearing geometry, surface speed, and gas pressure and

viscosity. Analysis of any particular system is extremely complicated. It is assumed

that any turbine-drive bearings will be operating in hydrogen gas. However, relevant

to this, a small bearing system has been run in flashing Freon.

The variation in windage loss may be approximated as follows:

Windage loss = C D 5 N3

As indicated, the determination of the bearing and windage losses is a function of many

design variables. For the parametric study, these losses were assumed to be only a

function of wheel diameter. The bearing and windage loss was assumed to be 6 w for

a 0.40-in. turbine wheel, and to vary directly with wheel diameter. This value is

based on recent development test data with this size wheel.
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Fig. 1-59 Estimated Performance Characteristics of Small High-Speed Turbines
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P

To optimize turbines over the complete hydrogen flow range is, thus, an involved

process requiring the consideration of many variables. Based on preliminary studies

and development test data, considering primarily bearing and windage losses and manu-

facturing tolerances, a maximum speed of 300,000 rpm and a minimum wheel diameter

of 0.40 in. were established as design limits for the turbine studies.

Turbine Supersaturation. From the standpoint of the turbine, it is desirable that the

inlet conditions be in the superheated region. This would improve turbine performance

and reduce the possibility of erosion problems. In operation from the saturation line,

the fluid is supersaturated when it is completely a vapor, although standard equilibrium

calculations indicate that condensation begins at the instant that the computed quality

falls below 100 percent. Expansion from the saturation line represents a condition in

which all of the fluid is evaporated but none of it is superheated. An equilibrium ex-

pansion shows a mixture of part liquid and part vapor. Heat is given up by the fluid

during this expansion. Part of the heat is equal to the product of vapor specific heat

multiplied by the reduction in vapor temperature. Another part is equal to the product

of the liquid specific heat multiplied by the reduction of the temperature of the pre-

viously condensed liquid. The remainder is equal to the product of the mass of liquid

condensed by the latent heat of evaporation. Most of the energy given up during the

equilibrium expansion comes from fluid condensation. Additionally, the process may

differ appreciably from adiabatic conditions at these cryogenic conditions.

The flow process is so rapid that the vapor probably does not have time to condense

during the expansion. In this case, the heat given up must equal the product of the

specific heat of the vapor by its temperature drop. If condensation does not take place,

the temperature for a given pressure is lower than for normal equilibrium and the

nozzle passes a higher mass flow.

Thus, if equilibrium conditions are assumed in design and a completely or partially

saturated condition is realized in operation, the turbine performance will be greatly

reduced. To achieve a given velocity diagram, a turbine designed for equilibrium

flow could differ considerably from one designed for supersaturated flow. The blade

height would be smaller for the supersaturated state than for the equilibrium state.
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The actual condensation process is strongly dependent on the rate of formation of

droplets of a certain critical droplet size. This, then, also is dependent on the con-

dition of the inlet fluid, whether it is dry saturated or wet saturated.

Turbine Condensation. The ultimate equilibrium state of expansion has two undesirable

effects: (1) it lowers turbine efficiency and (2) it promotes erosion. Once condensation

begins to take place and the droplets exceed their critical value, they rapidly grow and

attain significant inertial forces. The condensate may then flow in contact with the

stator or rotor blades. Condensate striking the nozzle flows with little velocity and

must be accelerated to rotor speed by the rotor. The energy for this acceleration must

come from the working fluid. Thus, the efficiency of the turbine decreases in pro-

portion to the amount of fluid condensed. Since the turbine must do work on the con-

densate, the decrease in efficiency can be expected to exceed the liquid content in the

working fluid. Various experiments and data seem to confirm that approximately 1 per-

cent is lost for each percent of condensate in the turbine. The value used for the tur-

bine performance studies, and which seems to be a reliable figure for steam turbines,

has been a charge to the turbine of 1.3 percent for each percent of liquid indicated by

equilibrium expansion.

Although no data has been found on blade erosion from hydrogen, this should not be as

severe a problem as it has been with other heavier working fluids.

Turbine Performance. Figure 1-61 shows the available head, or enthalpy, as a function

of the turbine pressure ratio for inlet pressures of 10, 50 and 135 psia. One signifi-

cant point indicated by these curves is that the available head is less at the higher inlet

pressure of 135 psia for a given pressure ratio. The peak energy actually occurs in

the pressure range of 60 to 80 psia. Thus, maximum turbine power available from a

drive unit will occur in the pressure range below 80 psia. Vapor quality as a function

of the same variables is also shown in Fig. 1-61. The quality shown is that indicated

by an isentropie expansion under equilibrium conditions. At the higher inlet pressure,

these curves show that turbine performance is lower and the potential is much higher

for liquid in the turbine. The steps as indicated in the quality lines are due to the

fluid passing through the triple point (1 psia). An increase in the vapor to fluid ratio

occurs as the fluid transforms from the liquid phase to the solid phase thus providing

an improvement in the vapor quality.
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Figures 1-62, 1-63, and 1-64 show turbine-drive characteristics for an inlet total pres-

sure of 10 psia at pressure ratios of 10:1, 100:1, and 5:1 . In the flow range of 30 to

60 lb per hr, the turbine is basically sized to accommodate the high throughflow. For

these conditions, size will remain unchanged for the various pressure ratios. However,

higher speeds are required for compatibility with the higher pressure ratios. At the

low flow conditions, the maximum speed is attained and partial-admission miniature

turbines are required approximately 0.5 in. in diameter. The turbine at the zero out-

put power conditions has been sized for maximum turbine efficiency; whereas, at the

higher flow conditions, the speed was selected for maximum turbine efficiency. The over-

overall diameters shown on these curves allow for installation mounting. The actual

wheel diameters are about 1 in. less than the overall diameters shown on the curves.

Figures 1-65, 1-66, and 1-67 show the same turbine-drive characteristics as above

except for a total inlet pressure of 50 psia. As indicated, for the high flow rates, the

size and weights of these drive units are much less than for the 10 psia units. This is

due to smaller flow area requirements with the higher pressures for a given flow. For

maximum efficiency operation and for the smaller sizes, the rotational speeds are in-

creased until the 300,000 rpm limit is attained. Again, at the lower flows and constant

speed of 300,000 rpm, the turbine wheel size is selected for compatibility with maxi-

mum turbine efficiency. The effects of partial admission are also considered. Partial

admission effects on peak efficiency speed are indicated in Fig. 1-60.

As mentioned previously, the operating speeds shown in Figs. 1-62 through 1-67 were

selected for maximum efficiency. For a given set of operating conditions, the turbine

output power and torque, as a function of speed, will vary approximately as shown in

Fig. 1-68. The various speeds would normally be obtained through a reduction gear-

box with the turbine still operating at peak efficiency.

r

Figure 1-69 indicates the influence of turbine inlet pressures below 10 psia on the

various design variables. These curves are most valid for the high inlet flow con-

ditions in the range of 30 to 60 lb per hr. For lower flow rates, the diameter and

weight values obtained will be somewhat higher due to existing partial-admission

designs. However, in this range, the weights and sizes are quite small so that the

absolute numbers should be valid for further system tradeoff studies.
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For operation at higher inlet pressures of 50 to 135 psia, size and weight will be re-

duced only slightly at the high flows and will essentially remain unchanged at the low

flow rates. Above 50 psia, power output will increase slightly. At 135 psia, it will

actually be about 20 percent less than that available at 50 psia for a given pressure

ratio and flow rate.

Although the study was conducted only for 100 percent saturated vapor conditions, as

mentioned previously, operation in the superheat region would certainly be desirable

for the turbine. For each degree of superheat, the turbine output power will increase

about 1 percent. The other design variables studied would not change significantly.

From these parametric data, it may be concluded that turbine drives for the mixer

unit are possible. However, complete thermal conditioning system design evaluations

are required to compare system performance, reliability, response, and weight before

the best drive may be selected.
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SYMBOLS AND ABBREVIATIONS

The symbols and abbreviations used in this report are

presented at the end of each section, and in the order

in which they occur.

APf

AP L

AP B

_sep

"qp

LH 2 -- Liquid Hydrogen

GH 2 -- Gaseous Hydrogen

He- Helium

-- Fluid Drag Through Wick Screen, Ib/ft 2

- Static Pressure Across Wick

- Capillary Pressure Across Liquid-Vapor Interface, Ib/ft 2

W - Weight of Capillary Standpipe, Ib

R - Tank Radius, ft

L -- Tank Height, ft

o -- Material Density of the Capillary Standpipe; lb/ft 3

5 -- Thickness of the Capillary Standpipe, ft

u - Tip Speed, ft/sec

g -- 32.2 ft/sec 2

P -- Vapor Pressure, lb/ft 2
v

- Liquid Density, lb/ft 3

- Separation Efficiency

- Hydraulic Efficiency of Separator

K -- Work Coefficient, used in performance of dynamic separator

x - Quality of Inlet Fluid

L -- Latent Heat of Vaporization, Btu/lb

I-I12
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J

J

LBV

LCB

Lp

P1 A

P2 A

G

D H

P1

P2

P3

NTU

E

h

A

T

uA

C

k

q-

n --

a --

- Energy-Work Conversion Factor

- Load of Belleville Spring, lb

- Load of Coil Springs and Bellows, lb

- Load of AP Across Poppet

- Actuation Pressure Times Bellows Area, lb

- Deactuation Pressure Times Bellows Area, lb

- Mass Flux Through Heat Exchanger, lb/hr-ft 2

- Hydraulic Diameter, ft

-- Expansion Valve Inlet Pressure, psi

- Expansion Valve Outlet Pressure, psi

- Final Saturated Vapor Pressure, psi

- Number of Transfer Units

- Heat Exchanger Effectiveness

- Heat Transfer Coefficient, Btu/hr-ft2-°R

- Fin Effectiveness

- Heat Transfer Area, ft 2

- Temperature, OR (Th-warm side, tc-cold side, tw-wall)

- Product of Overall Heat Transfer Coefficient and Area, Btu/hr-°R

- Heat Capacity, Btu/hr-°R

- Radial Distance Along Tank-Wall From Tank-Wall Heat Exchanger
Attachment, ft

Thermal Conductivity, Btu/hr-ft-°R

Heat Flux, Btu/hr-ft 2

Arbitrary Constant

h/kt

Point Attachment Radius for a Tank-Wall Heat Exchanger
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k I

w

AT-

t -- Tank Wall Thickness, ft

h - Convective Heat Transfer Coefficient Between Tank Contents and Wall,

Btu/hr-ft2-OR

h. - Convective Coefficient Within the Tube, Btu/hr-ft2-°R
1

Thermal Conductivity of Tank Wall, Btu/hr-ft-°R

Temperature Difference Between Tank Contents and Fluid Within Heat
Exchanger, °R

K 0 - Modified Bessel Function of Zero Order

K 1 - Modified Bessel Function of First Order

Q - Heat Transfer Rate, Btu/hr

N - Number of Pins

w - Vent Fluid Flow Rate, lb/hr

- Latent Heat of Vaporization, Btu/lb

L - Tube Length, for Tank Wall Heat Exchanger, ft

D -- Diameter of Tube, ft

f - Friction Factor

gc - Gravitational Constant

- Viscosity, lb/hr-ft

p - Density, Ib/ft 3

- Surface Tension, Ib/ft

t

_P

AL

N --
S

N-

Q-

Pressure Drop Per Unit Length, psi/ft

Specific Speed, NQ/(g HAD )3/4

Rotational Speed, rpm

Volumetric Flow Rate, ft3/sec

H - Head Rise, ft
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D __

U _

Reynolds Number, DU/V

Rotor Diameter, ft

Rotor Tip Speed, ft/see

- Fluid Kinematic Viscosity

_x - Hydraulic Efficiency at Inlet Quality

_mech - Overall Mechanical Efficiency

- Head Coefficient

_t - Adiabatic Efficiency Based on Inlet Total to Exit Total Pressure

M -- Mach Number

K -- Specific Heat Ratio of Gas

HAD - Adiabatic Head, ft

po/_i - Density Ratio Across Turbine

C - Disk Friction Coefficient

D - Effective Wheel Diameter, ft

- Cavity Gas Density

1-115

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A8397 83

Section H

PROPELLANTMIXING REQUIREMENTS

When a liquid hydrogen tank is being heated, temperature stratification will occur

unless some means of distributing the heat is used other than conduction and natural

convection through the fluid. Stratification increases the rate of pressure rise in the

tank and, therefore, the vent frequency. In the extreme event that a thermal condi-

tioning system only locally cools the tank propellant because of improper mixing, hot

spots (outside the mixing zone) on the tank could control the tank pressure. Such an

event, of course, would result in a failure of the vehicle mission.

In a 1-g gravity environment, buoyant forces create a boundary layer flow of warm

fluid towards the top of the tank. This warm fluid is deposited in a stratified layer at

the vapor-liquid interface and partially vaporizes into the ullage. In zero gravity,

these buoyant forces are nonexistent, and stratification takes the form of heated pro-

pellant, vapor generation, and superheat at the tank wall.

Stratification reduction may be accomplished by forced convection mixing, and there

are several criteria for reducing stratification by this means. Those investigated in

this program as applicable to a thermal conditioning system are as follows:

• Suppression of boiling

• Sweeping of boiling vapor bubbles from the tank walls

• Condensation of trapped vapor pockets

Consideration of the appropriateness of these criteria to mixing requirements will be

applied to zero- and low-gravity conditions. One-g gravity ground-hold and high-

gravity ascent flight effects on the thermal conditioning system design and perform-

ance will be evaluated in a later section of this report.
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If liquid hydrogen boiling is to be completely suppressed everywhere in the tank, then

the design conditions for the mixing requirements will be established at the points of

highest heat flux. These points are at the tank support and plumbing attachments.

From Fig. 1-33 it can be seen that these high heat flux points are widely dispersed.

The necessary velocity for suppression of boiling can be estimated by simultaneously

matching the forced convection and nucleate boiling correlations. This matching is

shown in Fig. II-1, where the Forster-Zuber correlation is used to extrapolate the

available nucleate boiling data. All of the available pool boiling data found to date are

summarized in Fig. II-2, which is reproduced from References 8 through 16. Noting

that typical cryogenic vehicle support and plumbing heat flux ranges from 30 to

300 Btu per hr-ft 2, it is evident that local forced convection velocities far in excess

of 10 ft/sec will be required on a continuous basis to suppress boiling. To provide

a cooling jet of liquid hydrogen only 1/4-in. thick and flowing at 10 ft/sec across the

equator of the Mission (2) vehicle tank requires a power input to the liquid hydrogen

of 187 Btu/hr whereas the heat leaks from all other sources into the propellant tank

average from 11.5 to 160 Btu/hr for typical vehicles (see Table I-l). Such power

dissipation is obviously unacceptable. It may be concluded, therefore, that propellant

mixing requirements are not to be based upon suppression of boiling.

Inasmuch as boiling must be permitted in the hydrogen tank, the velocity require-

ments for sweeping vapor bubbles created on the tank walls during boiling should be

established. If such velocity requirements are small, then sweeping such vapor

bubbles into cooler zones of the propellant tank and even through the thermal con-

ditioning system will cause them to collapse by condensation.

The liftoff volume of bubbles from horizontal surfaces is well established theoretically

and experimentally as a function of liquid surface tension, density, and the contact

angle. Unfortunately, a search of technical literature offered no information which

would enable the calculation of the critical size of a bubble attached to a vertical sur-

face. If such data were available, dynamic pressure forces could be substituted for
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buoyant forces, enabling calculation of the necessary velocity for a given size bubble.

Lacking the necessary relation, a simple theory was developed as a means of ob-

taining a rough estimate of velocity requirements and is presented in detail in the

Appendix A of this report. The results of the theory are presented in Fig. II-3.

From Fig. II-3, it can be seen that local liquid hydrogen velocities required to

detach bubbles of modest size are very low. For example, a velocity of about

0.1 ft/sec will detach vapor bubbles greater than 0.1 in. in diameter from the tank

wall. For vapor bubbles greater than 0.5 in. in diameter, a local liquid velocity of

only 0.05 ft/sec is required. Sweeping of vapor bubbles from tank walls is therefore

a practical concept in that low local velocities are adequate for this purpose.

Unfortunately this criteria is not applicable everywhere in the tank. Portions of the

propellant tank are blocked to effective propellant circulation by baffles used for

propellant slosh suppression. Figure II-4 shows such baffles as they would appear

in a Mission (2) vehicle, for example. The three baffles are 6-1/2 in. wide with a

vertical spacing of 12.9 in. The middle baffle is located on the tank equator, and all

baffles have a preferred setting of 1/2 in. from the tank wall, but in no case greater

than 1 in.

Unless extraordinary means_ such as direct pumping of the trapped vapor, are employed to

sweep vapor trapped within these slosh baffles, it must be presumed that vapor within

these baffles will remain locked -- independent of tank general circulation velocity. In that

event, such trapped vapor must be effectively cooled by condensation at the point of origin.

The forced convection requirements for condensation of such "locked" vapor generated

at the tank wall were investigated. A search of the technical literature revealed that

no experimental data or theory were available for predicting the rate of vapor con-

densation to a cooling stream of liquid. Therefore, the theoretical relations for

predicting the coefficient of heat transfer between a pure saturated vapor and a colder

moving stream of liquid in a zero-gravity field were derived by Sterbentz and

Bullard. The development of these theoretical relations is somewhat similar to the

works of Nusselt.
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In 1916, Nusselt derived theoretical relations for predicting the heat transfer

coefficient between a pure saturated vapor and a colder surface. In his work, it was

assumed that the force of gravity alone causes the flow of condensate over the cold

surface, thus neglecting the possible effect of vapor velocity upon the thickness of the

condensate film. By employing the definition of viscosity in streamline motion and

assuming zero velocity of the condensate at the cold surface and a maximum velocity

at the liquid-vapor interface, Nusselt obtained the thickness of the condensate film

at a given point on the surface. By assuming that the total thermal resistance lies in

the film of condensate through which the latent heat of condensation is conducted, but

neglecting the cooling of the condensate, the locat heat transfer coefficient may then

be calculated. A complete development and evaluation of Nusselt's work is given in

Ref. 17. The two forms of interest of the theoretical dimensionless equations of Nusselt

for film-type condensation on vertical surfaces are as follows:

and

kl3 2 )1/4h m = 0.943 p_g k/_ LAT (1)

hm 3 2 ' = 1.47 4F (2)

, P_ g

Figure II-5, taken from Ref. 17, presents a comparison of Eq. (2) with experimental

data taken from a 1-g gravity field with steam condensing on vertical tubes and plates.

It can be seen that the theory yields good agreement with the experimental data, although

the theoretical values are generally low. This effect is possibly due to the downward

flow of vapor, thereby reducing the condensate film thickness, and to mixing action of

the ripples in the condensate film.

In the work of Sterbentz and Bullard, it has been assumed that the streamline flow of

liquid over the vapor alone causes the flow of condensate at the cold liquid-vapor inter-

face in a zero-gravity environment. By employing the definition of viscosity in

streamline flow to the condensate film and assuming a zero-velocity of the condensate

at the vapor-condensate interface and a maximum velocity at the condensate-liquid
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interface, the thickness of the condensate film at a given point on the liquid surface is

obtained. Then, as in the work of Nusselt, the local heat transfer coefficient may be

calculated on the basis that the total thermal resistance lies in the film of condensate
/

through which the latent heat of condensation is conducted. Cooling of the condensate

is neglected. Equation (3) defines the heat transfer coefficient derived in this man-

ner. The detailed derivation is given in Appendix B of this report

hm = 1.12(k_p_ UoX/LAT) I/2 (3)

Figure II-6 presents the heat transfer coefficient as calculated from Eq. (1) for gravity

dominated situations and from Eq. (3) for forced convection cases.

The fact that the results of the theories are convergent is significant and indicates

that conditions can exist where condensation is either gravity dominated or forced

convection dominated. These domains may be identified by equating Eqs. (2) and

(3), yielding the following expression:

(4)

The right-hand side of Eq. (4) is a property function of the fluid. The left-hand side is

a Froude number given a temperature difference between the vapor and the condensation

surface. If this Froude number exceeds approximately 0.002 for a 1° R temperature

difference for liquid hydrogen, then condensation induced by forced convection is more

rapid than that induced by gravitational forces. The implication of this result is that

in a low-gravity field very gentle mixing of the propellant will bring about a more rapid

drop in tank pressure than would be induced by a tank-wall cooler or heat exchanger

without a mixer.

After the first firing of the engines of a space vehicle, the ullage contains helium gas.

When a mixture of a condensable vapor and a noncondensable gas is exposed to a sur-

face colder than the dew point of the mixture, some condensation occurs. A layer of
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condensate collects on the cooling surface and a film mixture of noncondensable gas

and vapor forms next to the condensate layer. The concentration of vapor in the gas

film is lower than in the main body of the mixture due to condensation of hydrogen.

Because of the difference in partial pressure of the vapor between the main body of the

mixture and at the interface between the gas and condensate films, the vapor diffuses

from the main body through the gas film to liquify at the interface.

In forced convection condensation however the moving liquid and condensate film cause

the vapor to move with the film as a result of viscous shear. The resulting drag causes

a circulation of the vapor and gas to produce a continuous convective replacement of

the low vapor concentration film next to the condensate film with a fresh mixture of

higher concentration from the main body of vapor and gas. The mechanism is obviously

quite intricate.

The effects of the addition of the helium noncondensable gas to the hydrogen con-

densable vapor are to lower the coefficient of heat transfer as computed from Eq. (3).

However, no estimate is currently available for determining the magnitude of the

effect.

Having established the values of the heat transfer coefficient for a condensing vapor

cooled by a moving liquid stream, the local forced convection requirements for tank

pressure decay must next be examined. The rate of change of tank pressure is

described by Eq. (5).

dp @d--8 = 7P Vg m
(5)

The expression, derived in Appendix C, is general and may be applied to various

ullage volumes and heat transfer areas. If the worst situation is assumed wherein

the tank pressure is diminished only by cooling the vapor trapped between the slosh

baffles, Eqs. (3) and (5) yield the following expression:
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dO - YP L AT (6)

From Eq. (6), it can be seen that the pressure response in a hydrogen tank is

dependent upon the tank and slosh baffle geometry, the ullage volume ratio, the tank

pressure, the temperature difference between the cooling liquid stream and the vapor

pocket, and the local stream velocity. Equation (6) is plotted in Figs. II-7, II-8,

and II-9 for the three reference vehicles and shows a marked decrease in pressure

response as the ullage volume increases. Also shown are the ullage volumes prior

to each of the firings; it can be seen that very low velocities will lower the pressure

within a few minutes - even near the end of the mission. For example, if the

thermal conditioning is activated when the tank pressure reaches 20 psi and shuts

off when it drops to 17 psi, the Mission (2) vehicle system will operate for 230 sec

with a velocity of 0.1 ft/sec at the propellant-vapor interface.

For efficient pressure response, the heat transfer rate between the vapor and cir-

culating fluid must be as high or higher than the energy vent rate, that is,

Therefore

> 1

Ik_ P_u°)_II/2 _ 1

_ L

1.12 L AT _, co X

For liquid hydrogen, this is satisfied if

1/2

22

This condition is easily met for even high vent flow rates of 10 lb/hr where the

required cooling stream velocity should be equal to or greater than 0.0084 ft/sec.
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Also of interest is the determination of the rate of pressure rise in the propellant tank

in a perfectly stratified condition. With this condition, as shown in the sketch below,

a layer of vaporized propellant will form on the tank wall.

j

Q

A heating rate Q enters the tank and creates vapor such that, at some time 9 , the

conditions indicated by the dotted lines exist. The newly created vapor occupies

approximately 40 times the volume it did as liquid. Considering the liquid to be in-

compressible relative to the vapor, this expansion of liquid upon vaporizing creates

a change in pressure by compressing the initial ullage and restricting the growth of

the newly created vapor layer.

As shown in Appendix D of this report , Eq. (7) represents the most rapid rate of

pressure rise that is possible in the propellant tank.

(_-_)max- (Vg/RVT) Cp (V_TT)
(7)

The term Vg/V T is the minimmn percent ullage volume (about 5 percent for cryogenic

stages). The term Q/V T is the heating rate per unit tank volume, and the reference

missions encompass a wide spectrum of value for Q/V T. Equation (7) is plotted in

Fig. II-10 showing the variation of tank pressure rise rate with heat rate and tank
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volume for an ullage volume ratio of 5 percent. From these data, the resulting

maximum rates of pressure rise for these three missions are:

Mission (I): (AP/Ag)ma x = 4.8 psi/hr

Mission (2): (AP/AO)ma x = 2.2 psi/hr

Mission (3): (hP/A_)ma x = O. 04 psi/hr

From these values it is clear that the vent frequency in the absence of mixing does not

impose severe response requirements upon the components of a thermal conditioning

system.

From Fig. II-6 it will be recalled that, in the absence of forced convection, fairly

high heat transfer coefficients are estimated by Nusselt's Eq. (1). In fact, for an

acceleration environment as low as 10-_, heat transfer coefficients of greater than

i Btu/°R-ft2-hr are obtained. For vapor trapped within the slosh baffles of the

Mission (2) vehicles, heat will be transferred across the vapor-liquid interface at a

rate of about 54 Btu/hr if the vapor-liquid interface area is equal to (bL) of the baffles.

This rate is well in excess of the average total heat leak into the tank of 11.7 Btu/hr.

Therefore, from these data, it might be inferred that the propellant tank contents may

be more mixed than highly stratified as inthe case described by Eq. (7). Consequently,

an analysis of a cycle was performed for a completely mixed propellant for the Mis-

sion (2) vehicle. The results are shown in Figs. II-11 through II-14.

For such a system, the regulator controlling the vent cycle would open at a preselected

tank pressure and would reseat at a preselected lower pressure. Figure II-11 shows

the time between vent cycles as a function of the regulator operating band and the

average heating rate. Values are shown for 0 days and 220 days. For a given opera-

ting band, the vent cycle is shorter later in the mission because the available heat

sink is less and results in a faster rate of pressure rise.

Figure II-12 shows the quantity of propellant vented during each vent period as a

function of the valve operating band and the propellant heating rate. It will be noted

II-18
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that heating rate does not change the expelled fluid quantity at the beginning of the mis-

sion, but it does near the end of the mission. The expelled propellant is proportional

to the heat sink capacity of the remaining tank contents. If a high heating rate occurs

throughout the mission, the available heat sink at the end is reduced by boiloff and

results in a higher vent frequency but less expelled fluid per cycle.

Figures II-13 and II-14 show the blowdown time as a function of the pressure control

band and the vent rate.

r_

t

From these data, it is clear that if a large degree of propellant stratification occurs in

a propellant tank, the thermal conditioning system will operate for many short vent

cycles. If a more nearly mixed propellant condition occurs in the tank, then the thermal

conditioning system will vent the tank over a relatively few longer vent cycles. The

specific degree of mixing or stratification that will occur in any propellant tank is a func-

tion of the specific vehicle and payload geometry and the details of vehicle orientation,

rotation, flight attitude, and maneuvers. A properly designed thermal conditioning sys-

tem should not be restricted by such consideratiorls. As such, the optimum thermal

conditioning system will have the capability to reliably meet the off-on operation of the

many vent cycles demanded by a stratified propellant condition, as well as meet the de-

mands of longer duration shut down and venting of the mixed propellant condition.

The foregoing analyses define the functional requirements of a mixer, in terms of fluid

circulation velocities, which can be related to the vehicle and mission parameters.

These circulation velocities can be provided by a mixer that either expels a jet radially

along the tank wall or by one that expels a jet axially in the tank. In either case, it re-

mains to relate the characteristics of the device to its functional requirements. These

requirements are discussed next.

Consider first in detail the radially expelled or single wall-bound jet. Since no analytical

model of a single wall-bound jet into a spherical tank was found in the literature, the mix-

ing phenomenon in a propellant tank in a zero-gravity field was predicted from an analysis

originated by Schwind. A jet leaving a mixer at the bottom of a tank will quickly become

a wall jet almost in pure radial outflow. This becomes a two-dimensional wall jet at

the tank equator, then approaches a radial inflow jet as it progresses in the upper half

of the tank. Separation from the wall will occur somewhere in the upper part of a full

H-23
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tank, and some of the wall jet fluid returns down the vertical axis of the tank to the

mixer inlet. The natural thickening of the wall jet is partially counteracted in the

lower half by the axisymmetric thinning effect of increasing circumference; and the

thickening is aided by this effect in the upper half. When the jet flow is initiated, the

central fluid is at rest; but it gradually arrives at a steady-state motion of a non-

isentropic toroidal vortex. At this steady-state condition, the core flow is separated

from the wall jet by an axisymmetric stream sheet, shown as a stream line in the

cross section cut through the tank in the following schematic. Friction on this dividing

stream line near the mixer exit provides an energy input to the vortex which is partially

SCHEMATIC OF
TWO POSSIBLE FLOW CONFIGURATIONS

redeemed elsewhere where the vortex will help drag the wall jet along. For axisym-

metric steady flow, an integral condition can be shown (Ref. 18) to the effect that the

net diffusion of (radius) x (vorticity) across the dividing streamline is zero. Boundary

layer separation may even occur not too far above the equator, and one more or even

several more closed vortexes may form as shown in the left half of the above sketch.

For a given full tank and starting wall jet, geometry dimensional analysis shows that

the fluid motion is solely a function of a characteristic jet Reynolds number.
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The effect of the toroidal vortex, while no doubt very important, has been

neglected in this analysis, as only the most sophisticated, costly computer program-

ming could include the vortex at this time. From results of this analysis, an estimate

can be made of the toroidal vortex strength and its effect on the wall jet.

Applying the moment of momentum about the center of a sphere, the continuity of

mass, and the viscous wall velocity profile matched to a free jet velocity profile at

the jet maximum velocity point, a number of equations can be derived which define

the maximum velocity in the jet, the distance between the tank wall and the maximum

jet velocity streamline, jet momentum, and total jet thickness. These results have

also been applied to the equations of heat transfer to obtain a measure of the heat

transfer coefficient at the tank wall for application to the tank-wall heat exchanger

unit. A detailed development of these relations is presented in Appendix E of this

report.

The results of these analyses are shown in Figs. ]]-15 through ]]-20. Figure II-15

shows the decay of the velocity and the heat transfer coefficient. Figures II-16

through ]]-19 show the growth of the boundary layer as well as the velocity decay for

a range of radius-to-jet-height ratios and various Reynolds numbers. The effect of

jet Reynolds number on layer growth and velocity decay is shown in Figs. ]]-19 and

]]-20 for various angular locations and two different radius-to-jet-size ratios.

Figure II-21 shows the appearance of the loci of velocity ratios U/U m for a Reynolds

number of 105 and different initial jet thicknesses. Figure ]]-22 shows typical values

of maximum jet velocities along the tank for a Reynolds number of 105 and different

values of initial jet thickness.

It is of interest to note from Fig. II-21 that the jet maximum velocity displaces slowly

from the tank wall. Although these profiles are representative of clean tank circulation

patterns, the thinness of the maximum velocity jet profile is encouraging. With slosh

baffles displaced from the tank wall, a reasonable degree of propellant circulation

between the tank wall and the baffles might be expected.

For the central or axial jet mixer, the fluid stream is ejected from one end of the

tank generally along an axis of the propellant tank. With an axial jet, the velocity
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Fig. II-21 Wall Jet Velocity Loci in Sperhical LH 2
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profile, velocity decay, and spreading angle are adequately described by free jet

theories and experiments, except near the opposite wall of the tank. On the opposite

wall, jet separation and a stagnation region will develop which permit the jet to

spread radially along the wall as a single wall-bound jet.

This stagaation region may, in fact, be a region of high heat flux where plumbing

penetrations are located (see Fig. 1-33). In a zero-gravity field, a large vapor

bubble may be generated and attached to the tank wall at this location. Unless this

bubble (ff it exists) is removed from the wall, it may control tank pressure independ-

ently of the action of the thermal conditioning system. A mixing criterion, therefore,

has been defined for an axial-jet mixer wherein the mixer jet velocity must be high

enough to penetrate and sweep the vapor bubble from the tank wall opposite the mixer

unit.

-j

Consider the condition illustrated in the sketch below:

D T

MIXER UNIT

SCHEMATIC OF CENTRAL JET FLOW
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In a zero-gravity field, only inertial and viscous forces act on the jet. If a vapor

bubble is in the path of the jet, the surface of the bubble will be distorted by the jet

dynamic forces being opposed by the bubble surface tension forces. If these dynamic

forces are large enough, the jet will break through the bubble. If these dynamic

forces are not large enough, the jet will be deflected by the bubble and will not reach

the opposite wall.

A complete analysis of this phenomenon is developed in Appendix F. From thi_

analysis, it has been shown that the critical local Weber number of the stream to

break through the vapor bubble is given by:

Wec r 4
(s)

Utilizing the conservation of momentum relations in the jet, this local critical Weber

number may be related to the required r_ixer jet Weber number.

p Uj 2 dj H
(9)

As an example, applying Eq. (9) to the reference mission vehicles and assuming a

2-1/2 in. mixer jet diameter, the data shown on Fig. II-23 were calculated. It can

be seen that for the Mission (2) vehicle, the mixer unit can throw the jet stream from

one wall of the tank to the other if the jet mixer exit velocity exceeds 0.4 ft/sec. A

jet velocity in excess of 1.2 ft/sec is required for the Mission (3) vehicles.

.2

To establish the validity of this criterion, a two--dimensional apparatus (Fig. II-24)

was fabricated for simulated zero-gravity experiments. The apparatus is constructed

of two flat transparent plates, spaced 1/8-in. apart. This spacing is adequate for

assuring that liquid flowing between the plates will remain attached to both surfaces.

Thus when the plates are placed in a horizontal position, the fluid flowing between

them is governed by only dynamic, viscous, and surface tension forces. The gravity

forces are negligible, thereby simulating a zero-gravity environment.
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Equation (9) for the three-dimensional jet cannot be used to describe the flow to be

expected in the two-dimensional apparatus. However, the same basic principles

are governing. As developed in the appendix of this report, the critical Weber num-

ber for complete penetration of a vapor bubble in the two-dimensional apparatus is

given by:

2

W - -21+
ecr

(i0)

Equation (8) is the three-dimensional counterpart.

Relating this critical Weber number to the conditions at the mixer jet discharge

Eq. (10) becomes:

pU_ t H= = 2 + tan + t 1
• H

WeJcr _ "_j 1 +_j tan 0

(ii)

Here the Weber number has been arbitrarily based upon plate spacing t and could

have been based upon the other jet dimension dj .

Figure II-25 presents the critical jet Weber number calculated from Eq. (11). A spread-

ing angle of 13 deg was used wherein the angle was determined from numerous photo-

graphs of the spreading jet. Experimental data obtained from experiments with the

two-dimensional apparatus shown in Fig. II-24 are also plotted in Fig. II-25. Tests

were performed with both water-air mixtures and with alcohol-air mixtures in 1-ft and

2-ft diameter tanks. The theory predicts the proper trend but the critical Weber number

tends to be low by a factor of 2. It might be noted that the dashed line through the data is

nearly coincident with the theory if a spreading angle of 20 ° is used in Eq. (11).

Table H-1, in the appendix presents a complete listing of all the experiments conducted

with the apparatus. These include several tests with the central jet in a clean tank
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which provided the basis for comparison with the critical Weber number criteria, as

discussed above. Figure II-26 shows some typical liquid-ullage patterns obtained

with this configuration; the flow rates range from subcritical to well above that needed

for complete circulation.

Tests were also conducted to determine the effect of baffles on central jet mixing

patterns. The three slosh baffles for the Mission (2) vehicle were scaled down

linearly and simulated in the two-dimensional apparatus. This simulation included

two configurations -the baffles installed against the tank wall, and installed with a

gap between the baffles and wall. In the latter case, the gap was scaled linearly

based upon 1 inch being allowed in the vehicle. When the baffles were attached

directly to the wall, it was not possible to break up or dislodge a large gas bubble

trapped between baffles. However, with the gap, the circulating fluid could flow

behind the baffles if the flow rate was high enough. It was found that a flow rate approx-

imately 30 percent higher than the clean tank "critical" value for the submerged axial

jet was sufficient to break through a vapor bubble behind the farthest baffle.

A wall bound jet in the two-dimensional tank was also investigated. A simulated pipe

was installed to represent the case of mixer intake and discharge occurring on oppo-

site ends of the tank as shown in Fig. II-27. This series of tests included the baffles

with scaled displacement from the tank wall. Again it was found that progressively

higher jet velocities were needed to break through vapor bubbles located in the gaps

behind successive baffles. This is shown in Fig. II-28. However, the jet would break

through behind all three baffles when _he flow rate was approximately equal to the

critical value for the submerged central jet. Also shown in Fig. II-28 is a critical

velocity for the same apparatus but with the baffles removed. The velocity was just

sufficient to completely sweep the bubbles off the tank wall. This velocity is slightly

higher than that required to break through behind all three baffles which tends to

indicate that the wall bound jet remains sufficiently thin to move through the gap

between baffle and tank wall without a noticeable loss in momentum. Figure II-29 shows

typical liquid-ullage patterns for a range of jet velocities with this jet configuration.

During tests a bar was placed over the flat plates of the test apparatus (Fig. II-29) to

prevent a separation of the plates under internal fluid pressure. This bar obscures

observation of the flow duct as shown in Fig. II-27.
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Fig. 11-27 Two-Dimensional Flow Test Appara tus  With 
A Single-Wall Bound Jet 
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Fig. I-[-28 Jet Velocities Required to Break Through a Gas Bubble Located Behind a
Given Baffle in the Two-Dimensional Test Apparatus
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Fig. 11-2 9 Typical Liquid-Ullage Patterns With 
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In summary, the experimental program has provided both qualitative and quantitative

data need for specification of liquid propellant tank mixing requirements. The program

has verified the theory for the central jet and has also shown that the inclusion of slosh

baffles will not impose unreasonable penalties on the mixer power requirements. It

can be concluded that if these requirements are established with the assumption that

condensation occurs only at one face of the bubble, the requirements will be conserva-

tive because some liquid was observed to flow between the baffle and the tank wall.
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SYMBO LS AND ABBREVIATIONS

y

A-

V -
g

W --

b-

Q-

V T --

Cp-

U -
m

U m --
o

We --
er

Weje r -

h - Condensation Coefficient, Btu/hr-ft2-°R
m

K_ - Thermal Conductivity of Liquid Propellant, Btu/hr-ft-°R

p_ - Density of Liquid Propellant, lb/ft 3

g - Gravitational Acceleration, ft/sec 2

- Latent Heat of Vaporization of the Liquid Propellant, Btu/lb

_ - Viscosity of the Liquid Propellant, lb/ft-see

L - Distance Between Baffles, ft

AT - Temperature Superheat of the Vapor, OR

F - Mass Flow Parameter, lb/ft-sec

U - Liquid Velocity at the Liquid-Vapor Innerface, ft/see
o

dp Rate of Tank Pressure Change psi/see
d0

Ratio of Specific Heats for Propellant Gas

Innerfaee Area Between Liquid and Vapor, ft 2

Ullage Vohtme, ft 3

Mass Flow Rate, lb/hr

Tank Circumference, ft

Heating Rate, Btu/hr

Tank Volume, ft 3

Specific Heat of Ullage Gas, Btu/lb

Maximum Velocity in the Jet at Angle 8, ft/sec

Maximum Initial Velocity in the Jet, ft/sec

Critical Weber Number at Liquid Vapor Innerfaee

Critical Weber Number at Jet Nozzle
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t -- Plate Spacing, ft

d. - Jet Diameter, ft
J

H - Tank Height Above the Jet Nozzle

U - Jet Velocity, ft/sec

U. - Jet Velocity at Nozzle Exit, ft/sec
]

c_ -- Surface Tension, lb/ft
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Section IH

SYSTEMDESIGNMETHOD

Having established the parametric requirements for the components of basic liquid

propellant thermal conditioning system concepts as well as propellant tank mixing

requirements, a general method for matching components and optimizing systems

for each of the three reference missions is required.

The general design method for evaluation and optimization of the liquid propellant

thermal conditioning system is described in this section of the report. The approach

is quite general. The final curves relate the system weight penalty to liquid hydrogen

withdrawal rate, tank pressure, and pressure ratio across the expansion valve. The

system weight penalty includes the fixed weight of the system, the hydrogen weight

loss associated with the work (heat) input from the'mixer unit to the bulk fluid, and

the electrical power penalty if any.

The data evaluated in the parametric analysis section are used in the system design

method and, when applicable, this data is repeated in this section to illustrate its use.

Some of the components, such as expansion valves, tank-wall heat exchangers, pas-

sive liquid removal units, etc., were previously eliminated as not being suitable for

use in a liquid propellant thermal conditioning unit. However, two classes of systems

remain that are applicable to a wide range of missions and vehicles. Systems design

methods are presented for both classes.

AXIAL-IMPULSE,TURBINE DRIVEN, COMPACT HEAT EXCHANGER SYSTEM
/

The design method is applied first to a compact heat exchanger system with a turbine

as the drive unit for the mixer. A fan is used to force the tank fluid through the heat

exchanger and to mix the tank contents. The components considered are as follows:

a. Fluid removal unit

b. Expa_ion valve.

HI-1
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c. Compact heat exchanger

d. Fan

e. Turbine drive

The turbine will be used to drive the heat exchanger fan and the dynamic separator,

where applicable. The object of the general design method is the development of a

parametric system weight curve for various tank pressures (Fig. HI-l). The actual

data to be used in the design method are shown in Figs. III-2 through III-13.

It should be noted that the design method can be used for tank pressures to 150 psia

and for hydrogen withdrawal rates to 60 lb/hr. As an exception, however, when a

dynamic separator is considered, the method is limited to low tank pressures. As

noted earlier at high tank pressures,extremely high power requirements make this

device impractical as a liquid removal unit. Data for a dynamic separator are pre-

sented for a tank pressure of 17 psia. For Missions (1}, (2), and (3}, the tank pres-

sure during coast periods is 17 psia. Figures III-5 and III-12 have been included in

the report to show more detail on turbine power output and weight at the lower pressures

associated with these missions.

_ TURBINE
FAN -- -- -

FLUID REMOVAL .L -----[-'---

LH 2 , GH2, _ NIT
Pi GHe !

I VALVE HEX

I
I
I
1_

SYSTEM

WEIGHT t
LB

Pz

P! = CONSTANT

LHz RATE_ LB/HR

a. TURBINE 0RIVE

Fig. III-1 Typical System Weight Curve, Turbine Drive System
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The overall system weight curves for the turbine drive system can be obtained as follows:

Step 1. Select a fluid removal unit (fluid filter or dynamic separator).

Step 2. Select a tank pressure Pl"

Step 3. Select a valve discharge pressure P2 o

Step 4. Select a liquid hydrogen flow rate WH2.

Step 5. If the liquid removal unit is a dynamic separator, determine power

requirements from Fig. m-2.

Step 6. Determine heat exchanger fan power requirements from Fig. HI-3,

Fan power is determined from warm side heat exchanger 100 percent

hydrogen gas.

Step 7. Determine turbine output power from Fig. III-4.

Step 8. Add the power required for the separator, when applicable, and heat

exchanger fan (Steps 5 and 6). If the turbine output power is equal to

or greater than the sum of the heat exchanger fan and dynamic sepa-

rator requirements, a power balance can be made; proceed to Step 9.

If the turbine output power is less than required, the system is not

feasible; return to Step 3 and choose a lower valve discharge pres-

sure P2" It should be noted that a trial and error process is not

necessary if a generalized plot is made of turbine output and fan input

requirements. This was done for Missions (1), (2), and (3) (Fig. HI-5).

It can be seen that the turbine output is greater than the fan input

requirements for valve discharge pressures less than 8 psia over the

entire flow range considered.

Step 9. Determine the weight of the dynamic separator unit from Fig. m-6,

if used.

Step 10. Determine the expansion valve weight from Fig. HI-7. The valve

weight is 2.3 Ib for the pressure and flow rates considered here.

Step 11o Determine the heat exchanger weight from Fig. IH-8.

Step 12. Determine the hot side (helium) flow rate from Fig. IH-9.
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Step 13.

Step 14.

Step 15.

Step 16.

Step 17.

Step 18.

Determine the fan weight from Fig. III-10.

Determine the turbine weight from Figs. HI-11 or HI-12.

The fixed weight of the system is determined by adding the weights of

the individual components determined in Steps 9, 10, 11, 13, and 14.

To obtain the overall system weight penalty for the turbine drive sys-

tem, the heat addition due to the work performed by the fan must be

evaluated (it is assumed that heat addition due to turbine inefficiencies

is removed by the withdrawn hydrogen). The work (heat) input to the

tank fluid is removed by withdrawing an additional amount of hydrogen:

The weight penalty in terms of fluid can be found from:

5W F p (3.413)
= (h 3 - h2) w.2 %

Using the above equation and Fig. III-3, the weight penalty is shown in

Fig. I_-13 for the general case and in Fig. III-14 for Mission (2).

Thus, the total weight penalty for a given system, PI' P2/PI' and

WH2 is:

W = WLR + WV + W H + W F + WT + hW F

Return to Step 4 and reiterate for various liquid hydrogen withdrawal

rates. The result will be a curve of system weight as a function of

flow rate for a given valve discharge pressure.

Return to Step 3 and repeat for various valve discharge pressures.

The result will be a series of curves of system weight as a function

of flow rate for various valve discharge pressures.

Return to Step 2 and repeat for various tank pressures. The result

will be several graphs of system weight for various tank pressures

for a given system.

III-16

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

500

3OO

200

I O0

-_ 70
=-
D

50
Z

= 30
r_

.J

z0
tLI
O.

0
..,I

Z

o I0

>.

7

/
/

/

/
/

/
0

MISSION (2)

/

/ f
/ /

f

jv

/
/

,// t

/
/

/

J

J

J
f-

I

J
jr

_pSt_ -

f

I 0 20 30 40 50

HYDROGENWITHDRAWAL RATE, LB/HR

+.

Fig. m-14 Mission (2) Fan Work Weight Penalty

6C

m-17

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

ELECTRIC MOTOR DRIVEN COMPACT HEAT EXCHANGER SYSTEMS

The general approach for the systems using an electric motor drive (Fig. ]H-15) is

similar to the approach used for the turbine drive systems. A power weight penalty

is included for the electric motor. This penalty is a function of the time that the elec-

tric motor is used. The number of hours, 8, that the electric motor will be running

(or the thermal conditioning system operating time) is simply the term shown in

brackets in Step 15 above or

0= qt

WH2 (h 3-h2) - p(3.413)

The procedure for developing the system weight curves for an electric motor is quite

similar to that for turbines. The steps below marked same are identical to those for

the turbines which were discussed previously.

Step 1. Same

Step 2. Same

Step 3. Same

Step 4. Same

Step 5. Same

LH 2 OR GH 2 OR He

FLUID REMOVAL
UNIT •

!
I
I

I
L-__

$ ,--,

FAN E_Z_--'LT.J ' ELECTRIC MOTOR

VALVE _ I
HEX I

I
J

SYSTEM

WEIGHT_

LB

Pz 220 DAYS
22 DAYS

""----- _-------- -- 2.2 DAYS

PI : CONSTANT

Pt

LH e RATE, LB/HR

b. ELECTRIC MOTOR DRIVE SYSTEM

Fig. IH-15 Typical System Weight Curves, Motor Drive
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Step 6.

Step 7.

Step 8.

Same

Add the power required for the separator, when applicable, and the

heat exchanger fan (Steps 5 and 6). This is the output power required

from the electric motor.

The electrical power weight is determined from the electric motor

characteristics (Fig. HI-16), assuming a fuel cell power source. The

fuel cell power weight is based on the Apollo fuel cell. The cell weighs

about 300 lb (including radiator) and has a 2-kw output power level.

The specific reactant usage rate is roughly 0.9 lb/hr-kw. Assuming

that the oxygen and hydrogen are stored in cryogenic tanks, the weight

storage for the reactants is roughly 0.25 lb/lb 0 2 and 2 lb/lb H2. The

overall power weight is thus:

t

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

Step 15.

Wp = 0.00135we + 0.15w

The fan power required (Fig. IH-3) is identical to the motor output.

From Fig. HI-16, the motor power draw can be determined. The

power weight can be obtained by evaluating the operating time of the

system, 0 , and by using the above power weight equation. The power

weight for the various system operating times is shown in Fig. IH-17.

The electrical power for Mission (2) is shown in Fig. III-18.

Same

Same

Same

Same

Same

Determine the electric motor weight from Fig. III-19.

The fixed weight of the system is determined by adding the weights of

the individual components determined in Steps 9, 10, 11, 13, and 14.

The total system weight is determined by adding (1) the electrical

IH-19
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Step 16.

Step 17.

Step 18.

power system weight and the boiloff due to fan or electrical motor

input energy and (2) the fixed weight. The electrical power was

determined in Step 8. The input energy required for circulating fluid

over the warm side of the heat exchanger is discussed in two cases.

In the first case, the electrical motor is mounted outside of the tank

and the heat given off by the motor (electrical and mechanical ineffi-

ciencies) is transferred to the venting fluid after it leaves the tank.

For this case, the boiloff is due only to the fan input energy. This is

identical to that for turbines (Fig. III-20). For the other case, where

the motor is located inside the tank, the electrical motor input power

is substituted for the fan input power in the fluid loss equation. The

energy weight contribution is shown in Fig. III-13 for the general ca,,e

and in Fig. III-20 for Mission (2).

Thus, the total weight for the system containing an electrical motor

for agiven P1 ' P2/PI ' andWH2 is:

W = WLR +W v ÷W H +W F +W E +Wp + _W

Same

Same

Same

III-24
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SYMBOLS AND ABBREVIATIONS

P1

P2

WH 2

P

q

t-

h3-h 2 -

W

WLR -

W H -

W F -

W T -

AW F --

Wp-

- Tank Pressure, psi

-- Valve Discharge Pressure, psi

- Hydrogen Withdrawal Rate, lb/hr

- Fan Input Power, watts

- Average External Heat Leak for Vehicle, Btu/hr

Mission Time to Last Firing, hr

Enthalpy Change of Vented Fluid Across Heat Exchanger, Btu/lb

Total System Weight, lb

Weight of Liquid Removal Unit, lb

Weight of Expansion Valve, lb

Weight of Heat Exchanger, lb

Weight of Fan, lb

Weight of Turbine, lb

Fluid Loss Due to Fan Input Energy

Electrical Power Weight, lb

w - Power Draw, watts

0 - Total Time of Power Draw, hr

W E - Weight of Electric Motor, lb

Note: NO SYMBOLS AND ABBREVIATIONS IN SECTIONS IV OR V
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Section IV

APPLICATION OF DESIGN METHOD

The design method outlined in the preceding section was used to make an optimization

analysis of thermal conditioning systems for Missions (1), (2), and (3).

Mission (2), the primary mission, uses an Earth-Mars kickstage, and will require

thermal conditioning of the liquid hydrogen propellant tank for 220 days (launch to last

firing of engine). The average heat leak for this mission is specified as 11.5 Btu/hr,

giving a total heat leak for the mission of 60, 720 Btu. Mission (1), a lunar logistic

mission, will operate for 133.5 hr. The average heat leak will be 160 Btu/hr, and

the total heat leak will be 21,360 Btu. Mission (3), the Mars manned mission, is a

220-day mission with an average heat leak of 22 Btu/hr and a total heat leak of 116,

160 Btu.

This analysis considered the use of both turbine-driven and electric motor-driven

mixers with a compact heat exchanger. Further, for the electric motor-driven fan,

both internal and external (to the tank) motor mounting was considered. For all con-

ditions, the total system weight (fixed equipment plus expendables such as electrical

energy and additional hydrogen boiloff due to equipment heat losses) was calculated as

a function of hydrogen withdrawal rate with valve pressure P2 as a parameter. The

systems considered can operate with any inlet fluid quality; thus, the weight of the

fluid removal device (a fluid filter) is included in the system weight curves as a part

of the expansion valve weight.

i

The selection of a syStem which can operate efficiently on any fluid quality rather than

one which can operate only upon all gas or all liquid removal is based upon the follow-

ing considerations:

• Retention of helium pressurant gas

• System reliability

LOCKHEED MISSILES & SPACE COMPANY
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Control of the vent system and proper evaluation of the associated boiloff

are affected by considerations involving the retention of helium pressurant for multi-

start vehicles: If the tank is maintained at a fixed total pressure equivalent to the

loading pressure (17 psia), then the retention of helium pressurant after an engine

firing results in a decrease in the hydrogen partial pressure. Decreasing the hydrogen

partial pressure causes the bulk of the propellant to be cooled (by boiling) to the partial

pressure saturated temperature. If, however, the tank contents are maintained at a

constant temperature (i. e., constant hydrogen partial pressure), there is no boiloff,

and some savings in helium gas and system weight are obtained. Figure IV-1 shows

a weight comparison of these two control methods, with systems designed to remove

only liquid or only ullage gas. In the latter system, it was assumed that all of the

helium was lost between firings.

The lightest of the three systems compared in Fig. IV-1 is the constant temperature

control, liquid removal only system. This system is idealistic, however, for two

reasons. First, the control of tank pressure by saturated propellant temperature

measurement requires a uniform temperature throughout the tank at all times if either

over pressure conditions or excessive tank venting are to be avoided. Second, the

measurement of temperature must be extremely accurate -on the scale of a few-tenths

of a degree Rankine. Note that the saturated temperature of liquid hydrogen varies

about 0.3°R per psi.

Practical control of tank pressure presently must be based upon tank pressure mea-

surement. From Fig. IV-1 it is clear that for a Mission (2) vehicle, less than a 5-1b

difference in effective helium pressurization system weight is estimated when com-

paring a thermal conditioning system which removes only liquid hydrogen to one which

removes only ullage gas. The weights of a dielectrophoretic or dynamic separator

exceed this weight difference. Therefore, for the Mission (2) vehicle, a lighter vent-

ing and pressurization system is obtained with a thermal conditioning sys tern which

removes either liquid hydrogen or ullage gas during venting.

The only liquid removal units which were identified for possible application were the

dielectrophoretic and dynamic separator units. Either unit is obviously much more

IV-2
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complex than a single screen filter. In the event that the pressurization and venting

systems are designed for liquid removal only and helium pressuraat gas is provided

on a no loss basis, then a failure in the liquid removal unit probably would mean a

failure to perform the mission. Thus from cursory reliability considerations, a

thermal conditioning system based only upon liquid removal is less reliable than a

system designed to efficiently operate with any inlet fluid quality.

A

W

TURBINE-DRIVEN FAN, COMPACT HEAT EXCHANGER SYSTEM

The system weight comparison for systems using a turbine-driven fan is shown in

Figs. IV-2, IV-3, and IV-4 for Missions (1), (2), and (3) respectively. The total sys-

tem weight increases with increasing hydrogen withdrawal rate and with increasing

valve discharge pressure. Figures IV-5 through IV-8 break down the total system

weight into fixed equipment weight and heat exchanger weight. It should be noted that

the total weight in these figures applies only to Mission (2); however, the heat exchanger

and fixed weight curves apply to all missions. The fixed weight includes the expansion

valve, heat exchanger, fan, and turbine. As can be seen from the figures, the heat

exchanger makes up an increasing percentage of the total fixed weight as the valve dis-

charge pressure increases. As the valve discharge pressure increases, the tempera-

ture change across the valve decreases. This presents a smaller driving force for heat

transfer in the heat exchanger and, therefore, a larger area and weight requirement.

The difference between the total weight and the fixed equipment weight is the increased

hydrogen boiloff due to the fan power.

ELECTRIC MOTOR-DRIVEN FAN, COMPACT HEAT EXCHANGER SYSTEM

The system weight comparison for systems using an electric motor-driven fan is shown

in Figs. IV-9, IV-10, and IV-11 for Missions (1), (2), and (3) respectively. All weights

are expressed as a function of the same variables used with the turbine drive system.

In addition, the weight depends on whether the motor is mounted internally or externally

to the tank. For an internally mounted motor, all input power will eventually be trans-

ferred to the tank fluid as heat and will appear as an additional hydrogen boiloff weight.

IV-4
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For an externally mounted motor, only the fan work will be transferred to the tank

contents. This situation is identical to that for a turbine drive. All motor losses

(I2R , windage, bearing) will be removed by submerging the motor in the vented

hydrogen flow. It is assumed that using this means of motor cooling will impose no

additional weight on the system.

Figures IV-12 through IV-15 give the total and fixed weight breakdowns for the electric

motor-driven system. Again, the total weight in these figures applies only to Mission

(2); however, the heat exchanger and fixed weight curves apply to all missions. For

this system, the fixed weight includes the expansion valve, heat exchanger, fan, and

motor. The difference between the total weight and fixed weight represents the elec-

trical power system weight and the hydrogen boiloff weight due to motor operation.

COMPARISON OF DRIVE SYSTEMS

l

A comparison of the total weight for the turbine and for the electric motor drive sys-

tems is shown in Figs. IV-2 through IV-11 and IV-16. For the low withdrawal rates

desired for the missions, the selected withdrawal rate will be based on component

limitations, and will probably be less than 5 lb/hr. For these low flow rates and for

low valve dischargc prcssures, the overall weight for the turbine and electric motor

drive systems are almost identical. Therefore, selection of the drive system must

be based on system characteristics other than weight. Some of the advantages of each

type of drive are discussed below.

The advantage of the turbine drive system is that the unit is self-contained, and no

external source of power is required. If electrical power is extremely critical, a

turbine drive system may be necessary. However, based on a power associated with

a fuel cell power source, the power weight increment is not severe.

The electric motor drive system appears, therefore, to have significant advantages

over the turbine drive system. These are:

a. The heat exchanger fan can be used for mixing tank fluid when no fluid is

being withdrawn from the tank.

IV-15
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b. A speed match can easily be made between the fan and the drive unit.

e. The starting transient can be made less severe by designing for a very

high starting torque or by operating the fan before the expansion valve is

opened.

d. The cost of the system may be lower and the development requirements are

less severe.

e. Exhaust duct pressure can be higher which reduces the tendency of solid

hydrogen buildup in the exhaust duct.

A comparison was made of ac and dc motors. A preliminary analysis was also con-

ducted to determine startup characteristics of the drive system. This work, discussed

below, indicates that the drive unit should be a brushless dc motor.

Several characteristics of brushless dc motors make them a better choice than ac

induction motors even though brushless dc motors have not been built to operate at

cryogenic temperatures. The design of a brushless dc motor for liquid hydrogen

operation will involve experience gained with cryogenic ac motors (bearing design,

etc. ) and experience with brushless dc motors designed for operation at ambient

temperatures. The advantages of brush!ess de motors .... ," _ ir_uction motors are:

a. Higher efficiency and, thus, lower heat input to the tank fluid

b. Less power draw from the electrical power system

c. High starting torque to reduce the startup transient

d. Ease of limiting power consumption during startup and operation

The first two advantages for a motor with a 5-w output power rating (this corresponds

roughly to a liquid withdrawal rate of 5 lb/hr with a valve discharge pressure of 4 psia)

will be considered. For Mission (2) the hydrogen loss due to the heat input from the

motor is 9.9 lb for the brushless motor and 26.5 lb for the ac induction motor. With

a fuel cell power source and an 80-percent efficient inverter (de to ac), the electrical

power weight is 1o 7 lb for the brushless dc motor and 5.6 lb for the ac induction

motor.
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The starting speed torque characteristics of a typical ac motor are shown in Fig. IV-17.

The starting torque is generally within 30 percent of the operating torque. Slight

improvements can be made in starting torque by changing the design, but this reduces

the efficiency at the normal operating point. For a brushless dc motor, the starting

torque increases at a constant rate as the speed decreases (Fig. IV-17). Starting

torques of 10 to 100 times the operating torque are, thus, possible. The brushless

dc motor will, therefore, arrive more quickly at operating speed; i. e., the hot-side

fluid rate through the heat exchanger will reach the steady-state value more quickly.

This will ensure that the heat exchanger is functioning soon after the expansion valve

is opened and, thus, reduce the possibility that liquid hydrogen will be vented overboard.

With liquid on the hot side of the heat exchanger, the flow requirements are reduced,

and the required overall power draw is less. However, the motor will tend to slow

down and increase power draw. With the dc motor, the power draw can be controlled

easily by electronic circuitry. In addition, if desired, the power draw during startup

can be limited or designed so that it is the same _s during steady-state operation.

An analysis was made to determine ff a turbine-driven system would start up with

little or no hydrogen liquid loss before steady-state operation was reached. It was

found that, for the conditions considered, the turbine would not develop sufficient

torque to overcome the breakaway friction of its own bearings. This condition is

caused by (1) the relatively high ratio of breakaway bearing torque to turbine running

torque encountered in small, very high-speed turbines, and (2) by the low volumetric

rate through the turbine due to the high gas density obtained at cryogenic temperatures.

Thus, a turbine-driven system is definitely not feasible for the vent rates under

consideration.

The analysis of the startup characteristics was based on ideal conditions that would

facilitate a fast startup. This was done to simplify the analysis and to determine

quickly if startup was possible. If startup was not possible under the assumed ideal

conditions, it surely would not be possible under the actual conditions encountered in

an operating system. The ideal conditions assumed were: (1) the fluid entering the

turbine nozzle was saturated hydrogen vapor; and (2) during expansion through the
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nozzle, the gas was heated so that saturated hydrogen vapor entered the turbine blade.

The flow rate considered was 5 lb/hr with an inlet pressure of 4 psia and an outlet

pressure of 0.1 psia. The saturated vapor assumptions are very optimistic, since

if liquid hydrogen is expanded from 17 psia to 4 psia, the quality is only 8 percent.

The assumption, thus, yields much higher nozzle velocities than would actually be

encountered. For the impulse turbine configuration, the enthalpy difference between

inlet and outlet is converted into kinetic energy in the nozzle. The resultant nozzle

exit velocity is approximately 1000 ft/sec.

The force acting on the turbine wheel is due to the change of momentum of the vapor

in passing through the turbine blade row. Typical blade angles were used, 15 deg at

the entrance and 19 deg at the exit. Since the blade is not moving initially, the vapor

is forced to turn through 146 deg in passing by the blade. The change in momentum

for the conditions considered results in a starting torque of 0.69 in.-oz, for a 1-in.

wheel. The axial force (or thrust) is 0. 000384 lb. Test data on gas bearings were

evaluated to determine the probable starting or breakaway torque of a 1-in. turbine

wheel supported by foil bearings. The starting torque was estimated to be, as a

minimum, 1.5 in.-oz. Therefore, the torque exerted on the turbine wheel is less

than 50 percent (under ideal conditions) of the torque required for starting the turbine

alone. It should be noted that additional starting torque is required for the fan and

for the electromagnetic gear train. Thus, the turbine will not start without an external

source of power and should not be considered as the drive system for the fan.
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Section V

SYSTEMSOPTIMIZATION

The results obtained thus far indicate that the thermal conditioning system design

should reflect the following:

a. A compact heat exchanger unit with a brushless dc motor-driven fan is the

preferred selection.

b. Since system should be capable of efficiently accepting either liquid or gas

from the propellant tank, the fluid-removal unit is a single filter screen

over the intake port of the expansion valve.

Before a system can be synthesized for the three reference missions, additional

information is required on flow and pressure control, on the effect of the heat ex-

changer warm-side flow rate, and on the operation of the fan and motor. The analysis

of these items and the development of the recommended propellant thermal conditioning

system are discussed next.

FLOW AND PRESSURE CONTROL

It is necessary to control both flow rate and pressure in the cold side of the heat

exchanger so that heat loads and available temperature difference are known. The

flow rates required for the three reference missions are very low, less than 1 lb/hr

on a continuous basis. An expansion valve discharge pressure of 4 psia is optimum.

It is sufficiently above the triple point (1 psia) to prevent solid hydrogen from forming

in the heat exchanger core and, in addition, yields a low system weight (Fig. IV-9).

It also pro,_ides sufficient, pressure for actuation ofthe expansion valve by the bellows

and allows a choked orifice to be placed downstream from the heat exchanger for flow

control. '
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A shutoff valve downstream from the heat exchanger is required to prevent an

expansion below the triple point. (This would occur if the exhaust line from the heat

exchanger were ducted directly to space. ) The valve can also be a flow-limiting

device that will improve system operation. The fluid state downstream from the heat

exchanger will always be vapor, whether gas or liquid enters the expansion valve.

Pressure at the flow-limiting orifice will be maintained at a constant value of approxi-

mately 4 psia. For all conditions, the vapor will be within a few degrees of tank tem-

perature. Thus, the orifice will ensure that the flow through the system will be

essentially constant, whether gas or liquid enters the system. This allows the heat

exchanger cold-side flow rate to be closely matched to system requirements. If

there were no flow-limiting device downstream from the heat exchanger, there would

be large variations in rate; this would result in a larger heat exchanger requirement.

Figure V-1 shows various possible pressure and flow control methods which use an

orifice in the valve downstream of the heat exchanger to control the flow rate.

The preferred method of pressure and flow control is shown in Fig. V-1A. The sys-

tem is actuated by a pressure switch located outside of the propellant tank. When the

tank pressure exceeds the design value, the switch causes the solenoid shutoff valve

to open and simultaneously turns on the electric motor. As the pressure in the heat

exchanger decreases below 4 psia, the regulator opens and maintains downstream

pressure. The solenoid contains a calibrated choked orifice, which limits flow to the

design value. When the tank pressure drops to the lower limit of the pressure switch

control band, the solenoid closes, the motor is turned off, and the pressure regulator

closes.

The flow-limiting orifice diameter will be approximately 0.065 in. A filter down-

stream from the heat exchanger will prevent particles from plugging the orifice; a

built-in filter on the regulator will prevent possible particulate contamination from

the propellant tank.

Figure V-1B shows another approach in which the dual-function valve (shown in

Fig. 1-11): opens when the tank pressure exceeds the design value and, in addition,

regulates downstream pressure. An electrical switch actuated by the valve stem is
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mounted on top of the shutoff portion. Thus, when the pneumatic shutoff valve opens,

the motor starts and the downstream solenoid valve also opens. This approach is not

recommended because two valves are used for essentially the same function; there-

fore, the reliability of the cryogenic electrical switch is questionable.

A third method of controlling flow and pressure is illustrated in Fig. V-1C. A

pneumatic valve, rather than a solenoid, is used as the shutoff valve and flow limiter.

The shutoff valve downstream from the heat exchanger is the upper portion of the

dual-function valve shown in Fig. V-lB. A switch on top of the valve is actuated by

the valve stem. This system is undesirable because the reliability of the switch is

questionable. In addition, the system cannot be shut off when the tank is pressurized

during engine firing or during the initial launch phase. A solenoid shutoff valve

allows more flexibility in system operation.

The systems described above have a flow-limiting orifice/shutoff valve located down-

stream from the heat exchanger. This device was necessary, as previously noted, to

prevent an expansion below the triple point in the heat exchanger. With this system,

fluid will be trapped between the 4-psia regulator and the shutoff valve when the tank

pressure drops below the design point of the pressure switch and the solenoid valve

closes. The trapped fluid will receive heat from the tank contents and, finally, will

reach bulk fluid temperature. If the fluid in the system is gaseous hydrogen when the

valve closes, the pressure will increase to 5 psia. If the fluid is a mixture of liquid

and gaseous hydrogen, the pressure will increase to 17 psia during standby. If the

trapped fluid is a mixture of helium and liquid hydrogen, the pressure will rise to

about 28 psia during standby. In all cases, the pressure in the heat exchanger will be

greater than 4 psia when the motor and solenoid valve are reactivated. This results

in a desirable built-in time delay, since the motor and fan will force fluid through the

heat exchanger before the regulator valve is opened. It should be noted that the

amount of fluid between the regulator and solenoid valve is very small even if liquid

hydrogen is passing through the system when the valve closes. The volume of the

system for the three reference mission is less than 0.1 cuft; there is less than

0.03 lb of hydrogen in the system. A pressure relief valve can be built into the

regulator valve body to reduce the pressure in the heat exchanger when the pressure

differential between the exchanger and the tank reaches a given level.
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HEAT EXCHANGER AND FAN ANALYSIS

The analyses show that, for a minimum weight system, the cold-side rate and the

expansion valve discharge pressure should be as low as possible. A further analysis

was performed to determine heat exchanger/fan characteristics for a nominal liquid

hydrogen flow rate of 5 lb/hr and a valve discharge pressure of 4 psia.

The first heat exchanger design was based on the assumption of a counter-flow con-

figuration with a warm-side temperature effectiveness of 0.90. Fluid flow over the

warm side of the heat exchanger can be liquid hydrogen, gaseous hydrogen, gaseous

helium, or a mixture of all three fluids. The worst design condition is gaseous

helium on the warm side. This condition was chosen in order to give a conservative

design. With a temperature effectiveness of 0.9, with no superheat on the heat ex-

changer cold side, and with a liquid hydrogen flow rate of 5 lb/hr, the required helium

(warm-side) flow rate is approximately 100 lb/hr. Two different heat exchanger face

areas were used to determine the effect of this variable. The face areas used were

3.0 by 3.0 in. and 6.0 by 6.0 in. The heat transfer rate for all heat exchangers was

870 Btu/hr. Table V-1 summarizes the important data for these units.

The lower core volume of the 3.0- by 3.0-in. face unit is achieved at the expense of

increased pressure drop and pumping power. These heat exchangers are fairly large

for the relatively low heat transfer rate of 870 Btu/hr because of the high temperature

effectiveness (0.9) used for the warm side. With high effectiveness, the log mean

temperature difference will be lower; and a larger exchanger is required for a given

heat transfer rate. If a higher warm-side flow rate is used, the effectiveness will be

lower, the heat transfer coefficient will be higher, and the required heat transfer will

be smaller.

r

The warm-side flow rate was doubled to determine the influence of effectiveness on

heat exchanger size. The valve inlet and outlet pressures were held constant at

17 psia and 4 psia, respectively. Also, the cold-side liquid hydrogen flow rate was

held constant at 5.0 lb/hr. These conditions resulted in a warm-side temperature
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effectiveness of 0.45. The new heat exchanger design and performance data are

shown in Table V-l, which reveals that a further reduction in weight was achieved

and that the pressure drop was not excessive.

The selection of a particular configuration must take into account motor-fan charac-

teristics and mixing requirements; therefore, the steady-state performance of the

fan-motor unit operating in liquid hydrogen was analyzed. The fan-motor will be

designed for operation in gaseous helium since this represents the worst condition

from the standpoint of heat exchanger design. However, it is possible that during

fan-motor operation, liquid hydrogen will enter the warm side of the system. This

will present no heat transfer problem if the fan-motor can pump sufficient liquid

hydrogen through the heat exchanger. The heat transfer coefficient will be higher

than'with gaseous helium; the hydrogen will be subcooled and will cause some gaseous

hydrogen to condense at the liquid-gas interface, which will lower tank pressure.

The liquid hydrogen flow condition will determine the motor size needed. Brushless

dc motors have fairly flat speed-torque characteristics (Fig. IV-17); therefore, the

volumetric flow rate will not decrease to a great extent. Because of the large mass

flow rate, the power requirement will be much greater for the liquid flow case than

for the gaseous helium case. Thus, the motor selected will probable operate at a

relatively low efficiency when gaseous helium (or a helium/hydrogen mixture) is

flowing through the system.

To estimate the performance differences of the fan-motor unit under both liquid and

gas flow conditions, data for an actual brushless dc motor were used. Fan per-

formance was estimated under different flow conditions. The motor characteristics

used in the analysis are shown in Fig. III-16. The warm-side flow rate was taken

as 100 lb/hr of gaseous helium at the heat exchanger design point. The heat exchanger

used in the analysis was the 6- by 6-in. -face-dimension unit discussed in the previous

section. It was assumed that a duct exit velocity of 25 ft/sec was required for mixing.

The performance data for the fan-motor unit are given in Table V-2.
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Table V-2

FAN-MOTOR PERFORMANCE

Characteristic

Flow rate 0b/hr)

Fan-motor speed (rpm)

Fan-motor input head (ft-lb/Ibm)

Fan-motor pressure rise (in.H20 )

Fan efficiency

Motor efficiency

Motor input power (w)

Warm-Side Fluid

Gaseous
Helium

i00

5700

12.2

0.50

0.80

O.24

2.40

Liquid
Hydrogen

2300

5000

8.03

6.80

0.73

0.77

12.2

The characteristics of the brushless dc motor ensure that it will not stall in liquid

hydrogen and that high flow rates will be obtained. These flow rates are more than

sufficient to prevent capillary binding within the heat exchanger, the ratio of dynamic

to capillary forces being 8 to 1. For the 6- by 6-in.-face-area heat exchanger, the

major pressure head is associated with accelerating the fluid to 25 ft/sec. Mixing

analyses presented earlier indicate that much lower velocities are required. Thus,

it is possible to reduce motor input requirements much below those in Table V-2,

which are given for comparative purposes only.

The cold-side design flow rate of the thermal conditioning system must be sufficient

to maintain tank pressure under the condition of maximum heat leak. The flow rate on

the hot side of the heat exchanger can be dictated by heat transfer requirements or by

the tank circulation requirements.

The basic cold-side rate shown in Table V-3 is based on the maximum heat leak to

the propellant tank with saturated fluid out of the heat exchanger. The design cold-

side flow rate was obtained by adding a 10-percent margin for heat input from the fan

and motor and another 20 percent to account for sizing of the flow-limiting orifice.

The helium rate was based on a warm-side effectiveness of 0.45, which yields a small
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heat exchanger without prohibitive power and heat leak penalties. The warm-side rate

with liquid hydrogen is based on a brushless dc motor fan drive which slows down only

slightly when liquid hydrogen passes through the system.

The flow rates shown in Table V-3 were used to synthesize systems for three

reference missions. These systems would be operating for approximately 45 to

67 percent of the mission. A schematic of the system is shown in Fig. V-1A.

Table V-4 shows the characteristics of the systems developed, based on a vent flow

rate approximately 30 percent greater than the maximum flow rate. All components,

except the heat exchanger and fan/motor, are the smallest practicable size. The

table reveals that the fixed weight of the system is not greatly reduced for the low-

flow requirements of Mission (2).

The power requirements shown in Table V-4 are based upon the use of a brushless

dc motor. However, the variation in power requirements among the three missions

is much less than the variation in warm-side flow rate. Also, for the flow rates

being considered, a comparison of the power requirements for helium and liquid on

the warm side reveals that the power is only moderately affected by fluid density.

This is due to two factors: (1) In decreasing the flow from the Mission (1) to the

Mission (2) requirements, the fan efficiency will be reduced by about 50 percent

owing to the lower specific speed and smaller size of the unit; and (2) as the motor

output requirements are reduced below 1 w, the motor efficiency drops rapidly be-

cause of the nearly fixed losses associated with bearings and windage (Fig. 1-54).

With liquid hydrogen, the motor efficiency was estimated at 62 percent for Mission (1)

and at 40 percent for Mission (2). With the lower fan power requirements with helium

flow, motor efficiency was only 10 percent for Mission (1) and 3 percent for Mis-

sion (2). Since the overall efficiency of the fan-motor combination is the product of

the individual efficiencies, the overall power requirements are not greatly reduced

by reduced flow or fluid density over the power range of interest. The result is that

more electrical energy per unit mass of vented flow is required for Missions (2)

and (3) than for Mission (1).

$*
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The overall system weight can be found by adding the fixed weight (Table V-4) and the

weights associated with supplying the electrical power and the additional heat of the

motor and fan. Table V-5 shows the total weight of the system when helium or liquid

hydrogen passes through the warm side of the heat exchanger. The electrical power

weight for a battery is based on a weight factor of 40 w-hr/lb. For the fuel cell, the

electrical power penalty is given by Wp = 0. 00135 WT + 0.15w.

For Missions (2) and (3) (220-day duration), the electrical and heat input weights are

much greater than the fixed weight for the flow-matched system. This is due to the

low motor and fan efficiencies obtained at the low rates associated with these missions.

The Mission (1) design flow rate can be used for Missions (2) and (3). This would re-

duce the overall time that the system was operating, resulting in a significant saving

in the overall system weight. This effect is shown in Figs. V-2 and V-3 showing the

total effective weight for the three missions. It can be seen that the weight for all sys-

tems is nearly optimum at the same vent rate whether the electrical power is supplied

by battery or fuel cell. This optimum vent rate corresponds to the Mission (1) flow-

matched system, which is a value of 1.4 lb/hr.
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Section VI

SELECTED SYSTEM DESIGN AND PERFORMANCE

SYSTEM PERFORMANCE

The design of the hardware package of the selected system for all three reference mis-

sions (:L.4 lb/hr flow) is shown in Fig. YI-1. The weight of the unit is estimated at

15 lb. The overall envelope dimensions are 11 x 11 x 13-in. The unit can conveniently

be attached to the cover plate at the top of the propellant tank as shown in Fig. VI-1.

The regulator, which controls the pressure to 4 psia, is shown schematically in

Fig. VI-2. The regulator contains a large integral filter to protect the poppet and

seat from particulate contamination. The flow through the valve is modulated by the

bellows which is exposed to regulated downstream pressure. The valve is designed

to close if a failure occurs (reliability considerations of the system are discussed

later in this section).

The heat exchanger is a counterflow plate fin unit (Fig. 1-23) with a 3 x 3-in. core

frontal area and a 7-in. length. The unit is stainless steel with 20 rectangular fins

per inch. The cold-side fins are 0.05-in. high and are offset with an uninterrupted

length of 0.1-in. The warm-side fins are 0. 075-in. high.

The solenoid valve unit (Fig. VI-3) consists of a solenoid valve with a current limiting

assembly located outside the propellant tank. The current limiter is a semiconductor

device which permits a high current to pass for 300 to 500 ms to allow the solenoid to

pull in. The current then drops to a low value (about 30 ma) to hold the solenoid valve

in the open position. With this approach, no coil compensation is necessary to limit

current flow. The resultant holding power requirement is maintained below 1 w.

The pressure switch is shown schematically in Fig. VI-4. This switch is mounted outside

the tank to improve reliability and to facilitate checkout and replacement. The unit con-

sists of a normally open, hermetically sealed, electrical switch element in contact with a

force-transmitting member. The aneroid contracts as the pressure increases; the actuator

moves and causes the switch contact to close; and the solenoid and the motor are activated.
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The brushless dc motor and fan are shown in Fig. ¥I-5. The axial flow fan is con-

nected directly to the motor which uses an ironless stator to eliminate iron losses.

The permanent magnet rotor provides a strong excitation in a compact size with con-

sequent reduction in windage losses. The rotor position controls the commutation

through a small permanent magnet on the rotor with inductive pickups. The actual

electronic switching device is located outside the tank.

All of the components described above have been used in liquid hydrogen systems except

for the brushless dc motor. The design of a brushless dc motor for liquid hydrogen

operation will be based upon experience gained with cryogenic ac motors (bearing

design, etc. ) and experience with brushless dc motors designed for operation at ambient

temperatures.

The heat loads during the prelaunch and ascent enviromnents are typically 100 to 300

times those in the space environment. The thermal conditioning system referred to

in the preceding paragraphs is not designed for these high loads. To do so would result

in a much larger and heavier system that is oversized for the space flight. This is

avoided by direct venting of the ullage through the ground vent and pressure relief

valve (Fig. VI-1) during the high heat load periods, at which time the propellant is

bottomed in the tank.

PERFORMANCE OF THE SELECTED SYSTEM

A single system design is recommended for use in all three reference missions. The

recommended system has a design vent rate of 1.4 lb/hr. The system characteristics

are shown in Table V-5. The design point of the heat exchanger is that with helium gas

on the hot side and with liquid hydrogen entering the expansion valve. This condition re-

quires the largest heat transfer rate with the lowest overall heat transfer coefficient.

The performance of the system for these conditions is shown in Fig. VI-6. The amount

of heat removed, i. e., enthalpy change of the vented fluid, is 176 Btu/lb. The temper-

ature profile in the heat exchanger and the heat transfer coefficients are shown in

Fig. VI-7. The sharp change in the temperature profile is due to the change in the mode

of the flow from annular to mist (see Figs. 1-19,20). The area required for heat transfer

is much larger in the mist regime; this is due to the low mass flux on the cold side of

the heat exchanger.
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The present design has no superheat in the exchanger and has helium flow on the warm

side. An additional 21 Btu/lb (maximum) of heat removal is possible if the cold fluid

is heated to tank bulk fluid temperature. The present design should provide some

superheat even with helium as the hot-side fluid since the design is conservative. For

all other conditions of hot- and cold-side flow, some superheat will be obtained. With

high quality fluid entering the heat exchanger, the cold-side exit temperature will be

very close to bulk temperature. The vent stream from the thermal conditioning system

can still absorb a significant amount of heat and could be used to intercept heat from

the space environment. The heat capacity of the vent stream is quite large, 1225 Btu/lb

if warmed to 400°R.

The mixer duct exit diameter is 1.75 in. with a jet exit velocity of 5 ft/sec with either

gas or liquid. This velocity is ten times higher than theoretically required to provide

jet continuity and mixing across the full span or diameter of the Mission (2) tank with

a liquid hydrogen jet (see Fig. II-23}.

RE LIABILITY

The reliability requirements of the thermal conditioning system have been reviewed to

determine the type and quantity of redundant items needed for the 8-day Lunar mission

and the 220-day Mars mission. Two approaches were taken:

a. Method 1 -The relative reliability of systems having various components

in redundancy are established assuming that a totally redundant system has

an arbitrary target reliability of 0. 995.

b. Method 2 - The absolute reliability of systems having various components in

redundance are established using actual and accepted failure rates for the

various components as determined from similar flight system hardware and

Gemini and Dynasoar Programs.

Method 1 -220-Day Mission (Missions 2 and 3_

The relative reliability requirements of the thermal conditioning system were reviewed

to determine the type and quantity of redundant items as may be needed for the 220-day

VI-8

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

4

Mars missions. The approach is parametric in nature; Fig. VI-8 shows the relative

reliability as a function of system weight increase.

The data on Fig. VI-8 was determined in the following manner. By definition the sys-

tem reliability is given by:

-At
R = e

where

_ = Failure rate, hr -1

t = Mission time = 5280 hr

Sub stituting

-At
e = 0. 995

At = 0. 005

Therefore the value of the failure rate, _ , is 0. 947 x 10 -6 hr -1 .

This permits tentative assignment of failure rates and reliabilities as follows:

X R

Heat exchanger 0.1 x 10 -6 0. 9995

Pressure regulator 0. 247 0. 9987

Shutoff valve 0.2 0. 999

Motor-fan 0.2 0. 999

Pressure switch 0.2 0. 999

Total O. 947 x 10 -6 hr -1

The overall time that the system will be actually operating is a function of average

heat leak, withdrawal rate, and motor input power. Whether the heat leak is pri-

marily absorbed by the vapor or by the liquid the setting of the pressure switch deter-

mines the frequency of operation. The minimum frequency of operation occurs when

V1-9
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4

the heat is absorbed by the liquid. For Mission (2), with a pressure switch band of

2 psi and with the average value of heat leak, frequency of venting will be once every

eight days at the start of the mission and once every five days at the end of the mission.

The logarithic mean minimum frequency is, thus, 6.3 days (_/8 x 5 ). The minimum

number of actuations during the 220 days is, thus, 35. The maximum rate of pressure

increase for Mission (2) is 2.2 psi per hr; this would result in 5808 actuations. A plot

of the normal assumed distribution is shown in Fig. VI-9. There is a 50-percent

probability that the number of actuations will be between 245 and 820. Thus, there

appears to be no excessive cycling since the probable number of cycles is a few hundred,

and even the maximum, 5808, is not severe.

The heat exchanger in this system operates at a very low temperature. However, the

temperature gradients and pressure differentials are both small. Such a heat exchanger

has an inherently high reliability. The counterflow design used is comparatively easy

to clean and inspect during the manufacturing process. Improvement relative in

reliability is obtained, if necessary, by increasing the gauge of the metal rather than

by duplicate units. The target failure rate is 0.1 x 10 -6 hr -1. The target Mean Time

Between Failure (MTBF) for the heat exchanger is

MTBF

MTBF

-6
= 1/_ = 1/0.1 x 10

= 10,000,000 hr

There are three design choices, from a reliability standpoint, for the pressure

regulator: (1) a single regulator, (2) two regulators operating in parallel, and (3) two

regulators with one operating normally and the other on standby.

If a single pressure regulator is used, for a mission time of 5280 hr (220 days), a

reliability of 0. 9987 will require that the regulator mean time between failures must

be 4,060,000 hr.
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If two pressure regulators are used in parallel and if their opening and closing points

(operating bands) are such that both units will normally operate, the mean time between

failures for each of the regulators is found as follows:

R = 1 - (l - _-)_t)2

For a reliability of 0. 9987, substituting and rearranging,

2
(1-_-xt) = o.oo13

-Xt
1 - _ = 0.03606

-_t
= 0. 96394

Xt = 0.03674

= 6. 958 × 10 -6 hr -1 per regulator

MTBF = 1/6.958 × 10-6 = 144,000 hr per regulator

Two pressure regulators may be used with one operating normally and the other on

standby, that is, operating only if the first regulator fails. If the regulators are

designed to close in the event of a failure, the standby arrangement could be obtained

by setting the normally operating regulator at 4.0 +0.3 psia and the standby regulator

at 3.0 ±0.3 psia. Since large pressure transients are not expected, the 4-psia regulator,

operating correctly, would provide complete control and the 3-psia regulator would be

closed and inoperative. The 3-psia regulator would operate only if the 4-psia regulator

failed. System operation would degrade slightly with the 3-psia regulator (the heat

transfer rate would be lower because there would be a smaller flow of gas through

the overboard orifice and, as a result, the motor would be required to operate for a

longer period of time per cycle). This would, however, occur toward the end of the

mission, if at all, and would be negligible compared to improved reliability.

The applicable equation is:

-_t
R = _ (1 + },t)

VI-13
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when R = 0.9987 and t = 5280 the equation is satisfied for

= 9. 848 × 10 -6

or MTBF = 102,000 hr for each unit.

The standby approach is, therefore, the preferred method; it leads to a reasonable

MTBF requirement.

For the solenoid shutoff valve, the use of quadredundancy is indicated to reduce the

MTBF requirement below 100,000 hr. Four identical solenoid-operated valves in a

series-parallel arrangement would be operated simultaneously as shown in Fig. VI-10.

It is apparent that the failure of one valve in either the open or closed positions does

not impair the ability of the system to perform its intended shutoff function. For any

two valves, 18 of the 24 modes of failure, including open and closed, can be tolerated;

only 6 will cause loss of function. Furthermore, of the 32 modes of failure for three

valves, 12 can be tolerated; 20 will cause loss of function.

Defining the probability of failure Q

Qs of the quadredundant assembly:

Q -- 1 - R = 1 _ _-Xt

= 1 - R = 1 - 0.999 =Qs s

for a single part and the probability of failure

0. 001 for a system reliability of 0. 999

The appropriate equation for the conditions of the above paragraphs is:

0.375 Q4 + 0.375 Q3 + 0.25 Q2 = 0.001

solving

Q = 0.0604

R = 1 - 0.0604 = 0.9396 =
-Xt

VI-14

LOCKHEED MISSILES & SPACE COMPANY



LMSC -A839783

At = 0.0623

= 0.0623/5280 = 11.799 x 10 -6

MTBF = 1/11.799 × 10 -6 = 84,800 hr

The quadredundant arrangement of valves leads to this reasonable MTBF valve. All

the valves can be included in one housing.

A mixer driven by adc brushless motor is used to circulate the tank fluid through the

heat exchanger. The only significant mode of failure is that in which the impeller does

not turn when the appropriate electric power input is sent to the control box.

For a redundant system, it is recommended that two complete mixer units be used,

each designed to handle 50 to 75 percent of the nominal fluid circulation rate. Normally,

both motors would operate; the resulting fluid circulation would be ample. In case of

the failure of one motor, the other motor would continue to operate. The warm side

effectiveness must increase above the present 0.45 design point; the heat transfer

rate would degrade slightly. The system would be less efficient since a larger amount

of hydrogen would be vented; however, the system would not become inoperative.

The calculation procedures for this mlit are the same as those for cases (1) and (2) u,^_

the pressure regulator, as given above. For a single motor fan, the required X is

0.2 x 10 -6 hr -1 or a MTBF of 5,280,000 hr. For two parallel units, the required

per unit is 6. 261 x 10 -6 hr -1 or a MTBF for each unit of 160,000 hr.

The function of the pressure switch is to turn the system on at a specified tank pres-

sure and to turn it off at a lower pressure. It consists of an on-off switch operated

by an aneroid which senses tank pressure. For reasons analogous to those for the

solenoid shutoff valve, above, one bellows would operate four single-pole switches,

connected to provide quadredundancy of the switching function. The switches turn on

the two impeller motors and also energize the four solenoids of the quadredundant

shutoff valve assembly.
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Fig. VI-10 QuadredundantArrangementof Solenoid Valves
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Certain circuit features, not previously mentioned, are essential for high reliability.

These include:

a. There should be two micronic filters, one upstream of the pressure regulator

assembly and one upstream of the solenoid shutoff valve assembly. In each

case, the filter would preferably be part of the assembly that it protects to

reduce the number of plumbing connections.

b. The electric switches should be well protected by condensers or diodes

from arcing or other surges of current.

c. The design should consider access to the pressure switch, located outside

the tank, since this is the element most likely to fail. Provision should be

made for checking each of the four switches individually without disassembly.

Method 1 -8-Day Mission (Mission 1)

The overall reliability of the totally redundant thermal conditioning system is assumed

to be 0. 995. The mission time, t , is 192 hours. Substituting this into the equation

R = e , we get

-At
e = 0.995

= 0.005

0.005
192

- 26.04 x 10-6/hr

This permits tentative assignment of failure rate and reliabilities as follows:

k_ Reliability, R

Heat Exchanger 0.1 × 10-6/hr 0.99998

Pressure Regulator 6.77 0. 99870

Solenoid Shutoff Valve 6.39 0. 99877

Motor-Impeller 6.39 0. 99877

Pressure Switch 6.39 0.99877

Total 26.04 x 10-6/hr 0. 995

VI-17

LOCKHEED MISSILES & SPACE COMPANY



LMSC -A83 97 83

The target MTBF for the heat exchanger for this mission is, therefore:

MTBF 1 1 10+7= = = hr
failure rate 0.1 x 10-6/hr

When the previously described analyses are applied to the pressure regulator, for the

8-day Lunar mission, the following values of MTBF are obtained:

a. For a single regulator, MTBF = 147,000 hr

b. For two regulators operating in parallel, MTBF = 5235 hr per regulator

c. For two regulators, one operating normally and the other on standby,

MTBF = 4800 hr for each regulator

When the 8-day mission time is substituted into the governing equations for a single

motor-impeller, the required k is 6.39 x 10-6/hr or a MTBF of 156,100 hr. For two

units in active parallel, the required is 181.9 x 10-6/hr or a MTBF of 5500 hr.

For the 8-day mission, quadredundancy is not required for the solenoid valves. A

single valve and two valves operating in parallel are considered. The governing

equations are the same as those used for the regulators and the results are as follows:

a. For a single solenoid valve, MTBF = 156,100 hr

b. For two valves operating in parallel, MTBF = 5500 hr per valve

As with the solenoid valve, the 8-day mission requires only biredundance of the pres-

sure switch instead of the quadredundancy required for the 220-day mission. In this

case one bellows operates two single pole switches, providing parallel redundance

of the switching function, and the MTBF is 5235 hr.

By using the values developed for MTBF for the 220-day mission, the basic nonredundant

system reliability is 0.81 as shown below.
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Component Name

Heat Exchanger

Pressure Regulator

Shutoff Valve

Motor Fan

Pressure Switch

Total

Failure Rates (_)

0.i x 10-6/hr

9.848

11.799

6.261

11.799

39.807 × 10-6/hr

For t = 220 days or 5280 hr

R

R

-39. 807 x 10-6 x 5280
-" e

-- 0.81044

Similarly it can be shown that the reliability for the 8-day mission is 0. 866:

Component Name

Heat Exchanger

Pressure Regulator

Shutoff Valve

Motor Fan

Pressure Switch

Total

Failure Rate

0.i x 10-6/hr

191.2

181.9

181.9

191.2

746.3 x lO-6/hr

For t -- 8 days or 192 hr

a

R =

-746.3 x 10-6 x 192
e

0. 86658

The increase reliability obtained for redundant units as a function of increase in system

weight is shown in Fig. VI-8. The basic system (no redundancy) weight is approximately
4

1JJ_:" Thus, increased reliability leads to a very small weight increase. The totally
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redundant system for both the 8 day and 220 day missions are shown in Fig. VI-11,

respectively. For the 220-day mission, the totally redundant system includes two

pressure regulators, four solenoid valves (Fig. VI-11a), two mixer units, four single-

pole pressure switches, and one heat exchanger. For the 8-day mission, it includes

one heat exchanger and two each of the other four components.

r

Method 2

Component failure rates are reliability estimates assigned to the particular component.

These estimates are based on evaluations of the component design, its operational

environment, and its operational function. Previous experience with similar flight-

qualified components permits assignment of conservative estimates to the components

proposed due to their similarity to existing Gemini ECS and RSS, and Dynasoar. The

estimated component failure rates are summarized below.

Component Name Failure Rate (_) Previous Usage

Heat Exchanger 0.02 x 10-6/hr Gemini RSS

Pressure Regulator 5.0 New

Shutoff Valve 1.0 Gemini ECS

Motor Fan 5.0 Dynasoar

Pressure Switch 0.16 Gemini ECS

Total 11.18 x 10-6/hr

Using the analyses described in Method 1 and the above component failure rates, the

nonredundant system reliability, for the 220-day mission is

R = 0.94270
s

This is increased to 0. 9987 with total redundancy as defined for Method 1.

For the 8-day mission, these component failure rates give a nonredundant system

reliability of 0. 998, and a totally redundant system reliability > 0. 9999.
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VEHIC LE INTEGRATION

Figure VI-12 shows the recommended liquid propellant thermal conditioning system

installed in the hydrogen tank of the Mission (2) vehicle. The mixer discharges axially

into the tank approximately 70 in. above the bottom of the tank with an exit velocity of

5 ft/sec. The jet spreads as it spans the tank, being turned into a wall bound jet at the

bottom of the tank, and providing a jet velocity at the slosh baffles of approximately

0.1 ft/sec. Referring to Fig. II-8, it is evident that this velocity would produce a

minimum pressure decay rate of approximately 1 psi/min, with only I°R temperature

difference between the ullage and the circulating liquid.

The tank pressure history immediately following an engine firing is dependent upon the

temperature of the pressurizing gas. During the expulsion cycle, the walls are heated

by the warm pressurant. When the flow of pressurant stops, the tank pressure will

start to decay due to condensation at the liquid-vapor interface, if the colder liquid does

not contact the walls. In this case, the walls are gradually cooled by conduction through

the vapor. However, if the liquid runs up the walls after engine cutoff, the walls will

be cooled rapidly by boiling the liquid. If condensation of the warm pressurant gas is

not rapid enough to offset this heat input from the walls, the tank pressure will increase

before starting its decay. It is not possible to analyze the condensation.

The combination of boiling and condensation phenomena is not amenable to simultaneous

analysis. However, if the condensation is neglected, the maximum tank pressure

following engine cutoff can be determined. Applying the perfect gas law to the ullage

and assuming the volume change is insignificant yields

R

(P2 - 1)1) -- V-'-g(M2 T2 - MIT1)

But

and

1
(M 2 T 2 - M1 T 1) - AE

CVg

AE = Pw 6 A (T - T_)w w CPw w
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Therefore, the pressure rise becomes:

Rg

P2 - Pl = Vg
CVg

(pSACP)w (_w - T_)

During the expulsion cycle, the walls establish a temperature gradient between the

liquid and the incoming pressurant. Assuming the average wall temperature cor-

responds to the average temperature between these two fluids, a maximum pressure

spike occurs following engine cutoff (Fig. VI-13).

UL.LAGE AREA
1.5

ULLAGE VOLUME

o I I I
0 100 2100 300

PRES_RANT TEMPERATURE (OR)

4OO

Fig. VI-13 Maximum Pressure Spike at Engine Cutoff

r_ Consider, the model depicted in the sketch below. Upon engine cutoff, the liquid-

vapor interface is flat. Then the liquid starts moving up the warm walls with some

velocity U° , and simultaneously cools the warm walls and the hot ullage.
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QW

i

The heat transfer from the walls is given by:

If one makes the conservative assumption that each element of the wall is instanta-

neously cooled as it becomes immersed,

Qw = 5 Cp(T w - T_ dO p5 Cp(T w o
W w

Combining these equations defines an effective boiling coefficient

pSCpb U °
hB = A

w

Now consider the heat being removed by condensation,

m

Qc = hc Af(Tg - T_)
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1

The theoretical expression for hc , developed in the discussion on propellant mixing,

is applicable here, since condensation occurs as a result of the film velocity.

Therefore,

Ik ]1/2
_t p t k U o

h c = 1.12 L/_T "

The ratio of heat added to the ullage by vaporization and that removed by condensation

is given by:

m

Qw hB Aw (Tw - Tt )

Qc hc Af Crg -T_)

This can be reduced conservatively to the ratio of effective coefficients. This ratio

becomes

Qw
m

Qc

P5 Cp) wb/%U O

For the Mission (2) vehicle hydrogen tank, this becomes

Qw (ULAT)I/2
Q--_ -- o. 0065

If this ratio is less than unity, condensation will control tank pressure, and there will

be no pressure spike following engine cutoff. From this cursory analysis, it does not

seem likely that this spike will occur.
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The pressure history following first and second burns is shown in Fig. VI-14 for the

Mission (2) vehicle. Both uniform heating and stratified heating are shown.

It can be seen that in either case, the vent time is short compared to the nonvent

duration. From the stratified heating model, one can determine the highest vent

frequency and the maximum number of cycles for which the thermal conditioning sys-

tem must be designed. For the 220-day Mission (2}, a maximum of 2640 cycles

should be required, which is not unreasonable for components such as those in the

thermal conditioning system.

MISSION ENVIRONMENT CONSIDERATIONS

Proper integration of the liquid propellant thermal conditioning system into a vehicle

requires some consideration of each of the environments which the vehicle will en-

counter. The effects of the ground hold and ascent environments are reviewed in this

section.

Ground Hold Environment

The propellant heating rate on the launch pad will be at least 100 times that occurring

during space flight. This makes it necessary to provide a separate ground vent sys-

tem which bypasses the thermal conditioning unit and vents the ullage directly. Thus,

the ground environment has no effect on selecting and sizing of components for the

liquid propellant thermal conditioning system.

However, the capability for checking out the thermal conditioning system on the launch

pad must be provided. This requires that a two-way valve be placed in the line down-

stream of the thermal conditioning system shutoff valve. This two-way valve may be

mounted on the outer load carrying shell of the vehicle.

During system checkout, the two-way valve permits the vented propellant to flow to

a vacuum pump which must be provided as part of the thermal conditioning system

ground-support equipment.
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The ground hold and ascent pressure relief systems are integrated with the thermal

conditioning system to provide the checkout capability and the proper operational

sequence. This integration is shown schematically in Fig. VI-15.

The operational sequence is listed below (symbols refer to Figs. VI-15 and VI-16):

• Fill_ During the fill procedure the venting function of the ground vent and

relief valve (U2) is in operation. The vent function is obtained by supplying

ground power to the flight vent control pilot valve (U4} which permits ground

GH e pneumatic control pressure to enter the system. Simultaneously,

ground power is supplied to the ground vent pilot valve (U1) which permits

ground control pressure to open the vent function of U2. Boiloff is delivered

to ground facilities for proper disposal through the tank vent disconnect (QD2).

• Thermal Conditioning System Checkout. The thermal conditioning system can

be checked out during ground hold operations after the fill operation by

utilizing a vacuum pump from ground facilities and energizing the thermal con-

ditioning system checkout valve (U3). Energizing U3 permits appropriate

vacuum conditions to exist at the thermal conditioning system, thereby per-

mitting a functional check of the system components through facility monitoring

of the vent flow rate. When satisfactory checkout is obtained, U3 is deener-

gized, permitting the valve to return to its normal position and permitting

bypass of the vent and relief functions of U2 by the thermal conditioning sys-

tem. This procedure permits use of normal vent and relief manifold.

• Ground Hold. During ground hold operations the vent function of U2 is main-

tained as previously described during the fill operation.

• Launch. Just prior to launch, ground power is discontinued to the ground vent

pilot valve (U1), which permits ground control pressure to close the vent func-

tion of U2. Full closure is monitored by the Limit Switch (LS1}. When full

closure is indicated ground power is discontinued to the flight vent control

pilot valve (U4). The deenergized position is monitored by the Limit

Switch (LS2). Launch is then initiated.
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Flight Venting. The system is designed so that ascent heating deposited

into the LH 2 tankage can be vented through Q2, thereby negating the addition

of a flight vent system. The flight vent sequence is initiated by a pro-

grammed input just prior to booster engine cutoff (BECO). The sequence of

operations for flight vent is best explained by referring to Figs. VI-15 and

VI-16. The programmed flight vent command closes the normally open

(NO} contact on line 2 (Fig. VI-16), which permits vehicle power to energize

the ground vent pilot valve (U1) through the closed contacts of the flight vent

shutoff pressure switch (PSi-Line 2). PS1 is set to actuate from its normal

position (Fig. VI-16) at 17 psia. The ascent heating has therefore increased

the tank pressure above 17 psia. The switch is actuated, permitting vehicle

power to energize U1. Vehicle pneumatic control energizes the vent function

of U2 open through U1. When the tank pressure decreases to 17 psia the

pressure switch returns to its normal position and permits vehicle power to

energize the flight vent shutoff latching relay (K1-L-IAne 1) which opens the

normally closed contacts of K1 on Line 2. Vehicle power is then permanently

discontinued to U1. The ground vent pilot valve (U1) returns to its normal

position and permits vehicle pneumatic control to close the vent function of

U2. All subsequent venting of the tank will be conducted through the thermal

conditioning system.

The relief function of U2 remains in the system as a safety relief.

VENT GAS UTILIZATION

The sensible heat capacity of saturated hydrogen vapor at space ambient temperatures

is much higher than its latent heat. If this capacity can be efficiently used, it will

effect a significant weight savings for the vehicle. Some potential uses for this vent

gas are discussed below.

Cooling Supports

With a well designed thermal protection system for long term hydrogen storage in

space, the supports should contribute less than 30 percent of the total propellant heating.
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The liquid hydrogen tank of the Mission (2) vehicle might use a fiberglass, minimum

point support system for which the heat leak is 1.5 to 3.5 Btu/hr (see Fig. VI-17).

If a heat exchanger is used that intercepts all of this heat coming through the support

on a continuous basis, it saves between 20 and 95 lb in hydrogen boiloff for Mission (2).

For intermittent operation, this saving is reduced in proportion to the non-operative

portion of the mission. In the systems optimization section, it was shown that inter-

mittent operation of the thermal conditioning system with a vent flow rate of 1.4 lb

per hour was optimum because of the excessive power requirements for continuous

operation of the mixer. The penalty associated with continuous operation was approxi-

mately 35 lb. Therefore, the use of a penetration cooler might, theoretically, elim-

inate the weight advantage for intermittent operation. Analysis must be applied to a

specific support system design before a final evaluation of the effectiveness of a pene-

tration cooler can be made.

VI-33

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

g

.J

o
z
o

o
u

t,u

o

4 m

3

2

0

FIBERGLASS/EPOXY SUPPORTS, 0.035-1N. WALL

MYLAR/DEXIGLASS }NSULATION ON SUPPORTS

FIBERGLASS INTERMEDIARY

FIBERGLASS AND MYLAR DISCS IN TUBULAR SUPPORTS

I [ I l
0.25 0.S 0.75 1.0

THICKNESS OF MULTILAYER INSULATION ON SUPPORT RODS (IN.)

Fig. VI-17 Calculated Heat Leak Through Tank Support System, Mission (2) Vehicle

Insulation Cooling

Another technique for increasing propellant storability would involve the placement of

cooling coils within the insulation. Figure VI-18 shows that this technique can reduce

the heat input through the thermal protection system by approximately 50 percent.

However, as with support cooling, this savings is realized only for continuous opera-

tion, and thus it is partially offset by component inefficiences at the low, continuous,

vent rates. Perhaps more important is the difficulty in supporting this cooler within

the thermal protection system without seriously degrading its performance. Also, if

this thermal conditioning superheater is placed within a high performance, multilayer

thermal protection system, the insulation performance will be seriously impaired by

any leakage from the heat exchanger that is sufficient to increase the interstitial pres-

sure in the multilayers to above 10 -5 tort.
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Para-Ortho Conversion

The potential advantage of slush lies in its ability to absorb more energy while in the

propellant tank. A catalytic converter can only be advantageously applied to the vented

vapor after it has left the tank and been superheated. The catalyst speeds up the process

of changing the para-hydrogen to the higher energy equilibrium form. This process is

temperature dependent as shown on Fig. VI-19, which shows that the maximum heat of

absorption occurs at 100°K.

A system employing para-ortho conversion might consist of a valve, an internal heat

exchanger (with fan) to vaporize the vented propellant, followed by tubes running along

the tank supports. These tubes would be filled with a catalyst such as hydrous ferric

oxide, and the heat of conversion would come from that normally conducted down the

support into the tank. This process is illustrated by the dashed line on Fig. VI-20.
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The total refrigeration capacity at 100°K, represented by heat of conversion plus the

latent and sensible heats is approximately three times the one atmosphere latent heat;

i. e., the boiloff reduction could approach 66 percent. This would be realized only with

continuous operation. For intermittent operation, the effectiveness should be reduced

in proportion to the nonoperating time. Again, most of the continuous flow rates of

interest in this program are so low as to be unrealistic; this reduces the potential use-

fulness of para-ortho conversion. Also, the development of potential catalysts is still

in its infancy and is limited primarily to investigation of the physical and chemical

processes involved. Very little information is available on the pressure drop and heat

transfer characteristics within a catalyst bed, making a meaningful investigation at

this time beyond the scope of this program.

Nonvented Oxidizer Tanks

Each lb of vented hydrogen vapor, when heated from its saturation temperature to that

of liquid oxygen, absorbs energy equivalent to the latent heat of 3 lb of oxygen.

When the thermal protection systems for a vehicle's hydrogen tanks and oxygen tanks

are optimized individually, the optimum oxygen boiloff is approximately half the

hydrogen loss. Therefore, the capacity of the vented vapor is more than sufficient to

absorb all of the energy input to the oxidizer tank and negate the need for venting. For

the Mission (2} vehicle this results in a total weight savings in excess of 200 lb. This

appears to be the most profitable vent gas utilization.

Slush Hydrogen

The heat of fusion of the solid plus the sensible heat capacity of the liquid in rising to

the boiling temperature results in a significant reduction in the propellant boiloff, com-

pared to a i atmosphere liquid loading. The percent usable propellant is shown in

Fig. VI-21, assuming that boiling will occur when the tank pressure reaches 28 psi

(mixed temperature = 41.2°R). For 60 percent solid, boiloff is eliminated if the total

heat input is less than 50 Btu per lb of propellant, providing there is no stratification.

For the Mission (2) vehicle this means that venting would not be required for the first

200 days; the Missions (1) and (3) vehicles would not have to be vented at all.
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One cannot, however, depend upon continuous thermodynamic equilibrium with slush

hydrogen any more than with all liquid. In either case, the possibility exists of local

superheating, with the associated increased rate of pressure rise. Thus, a zero-g

propellant thermal conditioning system will likely be required with slush, but the func-

tional requirements will depend upon the vehicle size.

Consider the Missions (1) and (3) vehicles. Since the thermal capacity of the propellant

is sufficient to absorb all of the incoming heat, the thermal conditioning system might

consist only of a mixer and drive unit which is controlled to operate when the tank pres-

sure reaches 28 psi. Thus, it would operate intermittently for nonuniform heating,

each time bringing the tank contents into thermal equilibrium. For uniform energy

absorption, the system would not be actuated throughout the entire mission.

r Consider, now, the Mission (2) vehicle which must be vented at some point in time.
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If one assumes that the incoming heat is uniformly absorbed throughout the propellant

until such time as the tank comes up to the desired storage condition, then the thermal

conditioning system for maintaining that state will be the same as though the tank was

initially loaded with liquid. Only the operating time is different.

The practical thermal conditioning system, however, will consist of the same functional

components but will have a separate control on the mixer. This control will actuate the

mixer at a pressure slightly lower than the vent pressure. Therefore, in the case of

stratified propellant, the mixer will function in the manner described for Missions (1)

and (2). When the propellant has absorbed sufficient energy to raise the equilibrium

pressure above the mixer actuation pressure, the tank pressure will continue to rise

as a mixed propellant until it reaches the vent pressure, at which time the solenoid

valve will be actuated and the vent system will operate as a zero-g liquid propellant

thermal conditioning system.
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SYMBOLS AND ABBREVIATIONS

R - Component or Subsystem Reliability, e -)_t

)_ - Failure rate/hr

t -- Mission Time, hr

MTBF -- Mean Time Between Failures, 1/)_

Q - Probability of Failure of Single Part

QS - Probability of Failure of Quadredundant Assembly

5E - Wall Energy Added to Ullage, Btu

R - Universal Gas Constant

W

A -
W

Cp -
W

T -
W

.T L -

Qw-

M - Weight of Gas in the Ullage, lb

0w - Density of Tank Wall Material, lb/ft 3

5 - Thickness of Tank Wall, ft

Unwetted Tank Surface Area, ft 2

Specific Heat of Tank Wall, Btu/lb-°R

Average Temperature of the Tank Wall, OR

Temperature of the Liquid Propellant, OR

Heat Transfer From Walls, Btu/hr

U - Liquid Velocity up Wall, ft/sec
o

Qc - Heat Removed by Condensation, Btu/hr

Condensation Coefficient, Btu/hr-ft2-°R

Average Temperature of the Ullage Gas, OR

h w

C

T -
g

Thermal Conductivity of the Liquid Propellant, Btu/hr-ft-°R
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Appendix A

VAPOR BUBBLE DETACHMENT

A possible use of the mixing unit is to dislodge hydrogen vapor bubbles as they are

formed at hot spots in the tank before they can grow to such a size as to seriously

influence the tank pressure. The liftoff volume of bubbles from horizontal surfaces

as a function of liquid surface tension, density, and the contact angle is well established

theoretically and experimentally. The literature contains no information which would

enable the calculation of the critical size of a bubble attached to a vertical surface.

If such a relation were available, dynamic pressure forces could be substituted for

buoyant forces, enabling calculation of the necessary velocity for a given size bubble.

Lacking the necessary relation, the following simple theory developed by Satterlee is

presented as a means of obtaining a rough estimate of velocity requirements. Consider

the bubbles shown in the two views below. Liquid is blowing onto the bubble from

the right with velocity u , bending it toward the left relative to its equilibrium axis.
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A force balance on the bubble relating dynamic pressure forces to the sum of surface

tension forces around the footprint of the bubble results in

2 Tr

CD_ - 2°'rsinSmo_C°SCC°sed_
(A .1)

Assuming that _ is given by

8a - er

e = 8m 2 cos ¢ (A.2)

where em = 0.5(e a + Or ) , Eq. (A. 1) can be evaluated to obtain

sin 2 O ea epDu2 - 2 mj - r

C D o 2
(A .3)

When the fluid properties appropriate to liquid hydrogen are inserted [C D _ 1,

_/p _ 30cm3/sec 2 ea = ldeg er = 0deg 0m = 0 5 (0 a + Or) = 0.5deg_

the velocity requirement is calculated to be approximately 0.1 ft/sec for a 0.1-in .-

diameter bubble. This value of bubble detachment velocity neglects the effects of

velocity gradients in the wall boundary layer.
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SYMBOLS AND ABBREVIATIONS

0 - Local Contact Angle, deg

- Average Contact Angle, degm

CD - Drag Coefficient

gc - Gravitational Constant

r - Bubble Radius, ft

a - Surface Tension, lb/ft

p_ - Liquid Density, lb/ft 3

K - Bessel Function of Zero Order
o

, D -- Bubble Diameter, ft
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Appendix B

VAPOR BUBBLE CONDENSATION

If only liquid is circulated through the heat exchanger and mixer, then proper tank

pressure response will require that this circulating liquid be brought in contact with

and condense the vapor in the tank. The classical theories of vapor condensation deal

with streamline flow where the condensate is removed by gravitational forces. A theory

is developed herein which is applicable in a circulating flow field, in zero-gravity fields.

Consider a cooler fluid, with velocity u 0 , passing over a pure vapor in the absence

of gravity. Some condensation occurs on the moving stream; a condensate film of

thickness y is deposited and flows along with the free stream. In a streamline flow,

thi_ condensate film will remain in tact, having a laminar velocity profile.

._j_" CONDENSATE FILM

uo !Y

_.. :!-

L,Ou

VAPOR---' .__ ._

u LIOUID/ _TANK WALL

0

BAFFLE .-J
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The heat transferred by conduction only across an element of the condensate film having

a local thickness of y gives the equation

dQ z = ATdA = AT (b)dz = hy AT (b)dz (B.I)

This quantity of heat transferred is also equal to the condensation heat of the condensate

film. Therefore,

AT (b)dz = kdw z (B. 2)

For the entire length L of the vapor pocket, by definition,

h = Xw (B. 3)
m bL AT

Combining these three equations, to eliminate AT which is assumed constant, gives

k_ h m L dw z

y - _ dz
(B. 4)

The local mass flow in the layer is given by

w z = p_ _by (B.5)

Eliminating y from Eqs. (B. 4) and (B. 5), yields

hm--_)w dw = k t Pt _b dz (B.6)z z
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Integrating Eq. (B. 6) from O to L and O to _v and assuming that the u 0 and

therefore _ is constant yields

Eliminating

ki Pi _b = h m (w/2) (B.7)

from Eqs, (B. 3) and (B.7) gives

2 2ki Pi kfi
hm L A T (B. 8)

Equation (B. 8) can be rewritten in terms of constant free-stream velocity. Therefore,

hm = L AT
(B. 9)

Consistent with the assumption of streamline flow, the term _/u 0 will have a fixed

value of 0.625. Substituting this value into Eq. (B. 9) gives the desired equation for

the streamline flow forced convection heat transfer coefficient

Ik i P_ k Uo._1/2hm -- 1.12 I=A¥ / (B. lo)

across a vapor-liquid interface in a zero-gravity field.
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SYMBOLS AND ABBREVIATIONS

D

b -

y -

Z w

h -
m

L --

AT--

Vaporization Rate, lb/sec

Thermal Conductivity of the Liquid, Btu/hr-ft-°R

Tank Circumference in the Region of the Baffles, ft

Condensate Film Thickness, ft

Condensate Film Length, ft

Heat of Vaporization, Btu/lb

Average Condensation Coefficient, Btu/hr-ft2-°R

Distance Between Baffles, ft

Temperature Difference Between Liquid and Vapor,

Liquid Density, lb/ft 3

Average Velocity in Condensate Layer, ft/sec

%
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Appendix C

TANK PRESSURE DECAY RATE

Having related the induced circulation velocities to vapor condensation rates, the effect

on tank pressure response can now be determined. The theoretical model used herein

is shown in the sketch below and is the same conservative model used in developing the

condensation heat transfer coefficient.

The pressure in the tank is everywhere uniform and described by the perfect gas law

M

P =--_RT (C 1)
V
g

A mass and volume balance on the entire system gives

Mg = M T - M_ (C. 2)

Vg = VT - V_ (C. 3)

C-I
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Combining these three equations, we get

PV

_g = MT - p_ V _ + % V
RTg g

(C.4)

Differentiating this equation and simplifying, we get

dv1 dP 1 aT P_ 1 .___g.

P de --T_" = - V-g dO
(C. 5)

It is assumed that the pressure decay is sufficiently rapid that the vapor expansion or

contraction is adiabatic. Therefore,

Differentiating this gives

(C. 6)

P dT _ y - 1 dP

T dO y dO
(C. 7)

When this is substituted into the previous differential equation and simplified, we get

Pl
But _-- >>>

g

dO Vg

1 . Therefore,

dP _ YP/P._ \dv

(c. 8)

(C.9)
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The rate of heat transfer from the vapor to the liquid is given by

But, from the mass and volume balances,

dM dV

d--_e = Pf d-_e

(c.1o)

(C. 11)

Therefore, we get

dV
Q

de 01 X (C. 12)

When this is substituted into the expression for pressure response, we get

de (C. 13)

Another expression for the rate of heat transfer is:

Q =h AAT
m

(C. 14)

and then we have

dP _ yP____g)h(o_)Ahd_ Vg m
(C. 15)

This expression is general and may be applied to various ullage volumes and heat

transfer areas.

C-3
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For the diagram shown, if no heat transfer occurs, we then have the worst situation,

where pressure is diminished only by cooling the gas trapped between the slosh

baffles. If the wall curvature is neglected (i. e., R/L >> 1), the area for heat transfer

is

A = b L (C. 16)

The condensation coefficient developed previously is

k k_)1/2h m = i. 12 _ f,p_-_-uO

Substituting these into Eq. (A. 28), we get

dP P_ AT bL VT _ P! u0)')1/2

This shows that the pressure response in a hydrogen tank is dependent upon the tank

and baffle geometry, the precent ullage, the available temperature difference, and

the stream velocity.
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SYMBOLS AND ABBREVIATIONS

P - Pressure in Tank, psi

M - Mass of Gas, lb
g

M L - Mass of Liquid,

M T - Total Mass, lb

R - Gas Constant

lb

W

g

V -
g

V T -

V L -

dp_
dO

T -

pg-

Q-

h -
m

A -

Temperature, °R

Volume of Gas, ft 3

Total Volume, ft 3

Volume of Liquid, ft 3

Rate of Change of Tank Pressure, psi/sec

Rate of Specific Heats

Density of Ullage Gas, lb/ft 3

Heat Transfer Rate, Btu/hr

Condensation Heat Transfer Coefficient, Btu/hr-ft2-°R

2
Heat Transfer Area at Liquid Vapor Interface, ft

b - Tank Circumference in the Region of the Baffles, ft

L - Distance Between Baffles, ft

C-5
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Appendix D

TANK PRESSURERISE IN STRATIFIED PROPELLANT

Consider a propellant tank at time zero, for which the liquid and ullage are in thermo-

dynamic equilibrium, with a single ullage as shown in the sketch below.

A heating rate Q is entering the tank and creating vapor such that, at some time 8,

the conditions indicated by _e dotted lines exist. The newly created vapor occupies

approximately 40 times the volume it did as liquid. Considering the liquid to be

incompressible relative to the vapor, this expansion of liquid upon vaporizing creates

a change in pressure by compressing the initial ullage and restricting the growth of

the newly created vapor layer. Since pressure is uniform throughout the tank, we

can say

M 1 M 2

P1 = V-_- RT1 = "_2 RT2 (D. 1)

D-1
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where subscripts [Eq. ( D. 1 )] refer to the mass in the initial ullage bubble and sub-

scripts [Eq. ( D. 2 )] refer to the vapor formed at the tank wall. The former is

assumed removed from the tank wall and thus, it is compressed isothermally by the

growth of the vapor layer. We can say

5PI = _ (MIRITll 5VI
58 z 58

V 1

AP 2 M2R AT 2 RT 2 AM 2 M2RT 2 AV 2

-_ = v 2 a e + v--_- a--V- 2a-_
V 2

(D. 2)

A total volume balance gives

5V 1 5V 2 5V_
_+-_- + AO - 0 (D. 3)

Considering the liquid to be incompressible a mass balance gives

(D. 4)

An energy balance on the system gives

Q- 50 k + M2Cpg
(D. 5)

Combining Eqs. (D. 1) through (D. 5) results in the following general expression for

the rate of pressure rise, which includes both vaporization and vapor superheat

5"-0"= V I+V 2 Q - --_ RgT2 + _ (D. 6)
• \ Pg
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The first term on the right is the equivalent of putting all the heat into the initial ullage

volume. This represents the maximum rate of pressure rise. Vapor generation and

bubble superheat will result in lower rates, i. e°,

max = _ Q

This can be rewritten to give

(_) = R ._Q__ (D. 7)
max C

V1/V T is the minimum percent ullage volume (at least 5 percent for cryogenic stages).

Q/V T is the heating rate per unit tank volume. The specific missions of interest in

Task II encompass a wide spectrum of values for Q/V T . The maximum rates of

pressure rise for these three missions are:

Mission I : (AP/58)max = 4.8 psi/hr

Mission II : (/_P/AS)max = 2.2 psi/hr

Mission HI: (AP/5e)max = 0.04 psi/hr

From these, it would seem vent frequency in the absence of mixing does not impose

severe response requirements upon the components.
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SYMBO LS AND ABBRE VIATIO NS

P - Tank Pressure, psi

V 1 , V 2 - Vapor Volumes, ft 3

M 1, M 2 - Mass of Vapor in Volumes V 1 , V 2 , lb

T 1 , T 2 - Temperature of M 1, and M 2 , OR

R - Gas Constant

Ap - Rate of Change of Pressure, psi/sec
A0

Vl - Liquid Volume, ft 3

P._ - Liquid Density, lb/ft 3

Q - Heat Transfer Rate, Btu/hr

X - Heat of Vaporization, Btu/lb

C - Specific Heat of Gas, Btu/lb-°R
Pg
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Appendix E

S INGLEWALL-BOUND JET

Since no analytic model of a single wall-bound jet in a spherical tank was found in

available literature, the mixing phenomenon in a propellant tank in a zero-g field as

predicted from an axisymmetric analysis has been developed. A jet leaving a pump

at the bottom of sphere will quickly become a wall jet almost in pure radial outflow.

This becomes a two-dimensional wall jet at the equator, then approaches a radial in-

flow jet as it progresses in the upper half of the sphere. Separation from the wall

will occur somewhere in the upper part of the sphere of a full tank, and some of the

wall jet fluid returns down the vertical axis of symmetry to the pump. The natural

thickening of the wall jet is partially counteracted in the lower half by the axisym-

metric thinning effect of increasing circumference; and the thickening is aided by this

effect in the upper half. When the jet flow is initiated, the central fluid is at rest;

but it gradually arrives at a steady-state motion of a nonisentropic toroidal vortex.

At this steady-state condition, the core flow is separated from the wall jet by an

axisymmetric stream sheet, shown as a stream line in the cross section cut through

the tank in the following schematic. Friction on this dividing stream line near the

E-I
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pump exit provides an energy input to the vortex which is partially redeemed elsewhere

where the vortex will help drag the wall jet along. For axisymmetric steady flow, an

integral condition can be shown (Ref. 18) to the effect that the net diffusion of (radius) x

(vorticity) across the dividing streamline is zero. Boundary layer separation may even

occur not too far above the equator, and one more or even several more closed vortexes

may form as shown in the left half of the above schematic. For a given full tank and

starting wall jet, geometry dimensional analysis shows that the fluid motion is solely a

function of a characteristic Reynolds number, and the heat transfer, of Reynolds and

Prandtl numbers.

To predict the wall heat transfer qw ' certain characteristics of the jet at each point,

such as skin friction Tw , maximum velocity u m , and/or distance from the wall to

the point of the maximum velocity 5m , are needed, depending on the type of heat

transfer equation used. Thus the fluid mechanics problem is considered first.

The effect of the toroidal vortex, while no doubt very important, has necessarily been

neglected inthis analysis, as onlythe most sophisticated, costly computer programming

could include the vortex atthis time. From results of this analysis, an order-of-magnitude

estimate can be made of the toroidal vortex strength and its effect on the wall jet.

We apply the moment of momentum equation about the center of a sphere with radius R

and use angles 0 and 0 in two mutually perpendicular planes as shown in the following

schematics. In steady flow, the moment of momentum equation is: Sum of torques on

control volume = net angular momentum flux out of control volume.

Applying this to the control volume of length

from the wall to some arbitrary distance 5 i

results in (assuming 5 << R):

ds and width R sin 0 d 0 and extending

from the wall where the shear is _i '

-R (I" w + T i) ds R sin 0 do

1

d 2
= d--s sin0 d o

o
Pu 2 dy/ ds + m iu iR 2 sin0 d 0ds (E. 1)

This also assumes constant pressure along the wall.
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rdSd 8

SECTION A-A

CONTROL VOLUME NOTATION

The continuity equation applied to the same control volume yields

o

d(_-_ R sin 0 de udy ds + m iRsin0d¢ ds = 0
O

(E. 2)

Combining these equations to eliminate m i , and reducing:

5 i

= _-_ u2dy + tan OJo u2dy - u i _- udy

udy (E. 2a)

4

If the control volume extends to the edge of the wall Jet then vi and ui =0.

E-3
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We now pick inner and outer velocity profile shapes which are to join at the position

5 m of maximum velocity um . For the inner part, a power law fit is used as it is

very useful in boundary layer type profiles and has been used in many of the plane

wall jet analyses:

= i _l/n
(E. 3)

where n is an unspecified constant. Two useful integrals are

1 1 2

n (.y_) nu d 6J'mm = n-_. ; d 6 m = n-"+_
0 0

Abramovich proposes the following form for the outer half of the profile:

3/2\ 2 Y- 5m
U/urn = - / where _ = b

(E. 4)

where the quantity b is the width of the outer part of the boundary layer.

The following integral is needed:

f - g dg = 0.31
0

Introducing Eqs. (E. 3) and (E. 4) into Eq. (E. 2a) for a control volume that includes

the total jet thickness yields

-P--_w = d-_ Um 5m + 0.31u + _ Um m

E-4
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Here we have five unknown dependent variables: Tw , um , 5m , b, and n.

Glauert, Meyers, and others have all used Blasius' turbulent skin friction relation-

ship and based it on um and 5m (but the coefficient is here changed from their value

as explained later):

Tw u2( v )1/4-_-= 0.0620 m urn'5 m
(E.6)

Combining,

-0.0620 Rum = d-_ Um m

+ _ Um m
(E.7)

This skin friction relationship implies the 1/7-power velocity profile often used.

However, we will keep n an unspecified constant and obtain solutions for several

values of n to see its effect. Meyers et al. (Ref. 19) found the best fit n to be

about 13. We still need two more relationships. Using a control volume which only

extends out from the wall to the locus of points where u = u m , momentum and

continuity equations can be written which add no new variables. For this case

ui =Um ' vi = 0 , 5i = 5m and using the above Blasius' relationship,

- 0.0620 R

2

 1/4 um 8m5 "J tan 0
In/

n n d (u2 5m )(n + 2)(n + 1) + (n + 2) d-_ m

n d (u 5m )(n + 1) Um _ m {E. 8)
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One more relationship is still needed. The characteristic outer layer thickness b

should be related to the inner layer. Glauert (Ref. 20) uses instead the width 5t ,

which is the width from the maximum velocity point to the point where the velocity has

dropped to half this value. Glauert solved two nonlinear ordinary differential equations,

one each for inner and outer regions and matched these solutions together at u m . His

Fig. 3, which shows the solutions for a radial turbulent jet for: dimensionless stream

function at um , denoted fore ;maximum velocity, Um ; inner thickness, 5m " and

outer thickness, 5t , for various values of his parameter a , is included here as

Fig. E-1. InhisTable 1, he relates cL to Reynolds number by assuming k, the pro-

portionality factor for the eddy mixing in the outer half of the jet, to be k = 0. 012

(Bakke suggests 0.013 from his experiment}. Fortunately, the solutions given in

Fig. E-2 also applytothe plane jet, meaning that the transformed velocity profiles are

identical. This could be expected, actually, according to Mangler's axisymmetry

transformation. Most important, the same transformed (affinely stretched} profiles

can be expected to hold for any given c_ in the sphere. Since we are willing to be

satisfied with the ratio of thicknesses 8t/8 m the transformation is not needed since

at any given position along the wall jet the transformation for each thickness is the

same; thus

8t/8 m = _t/_m

This is very fortunate, since the transformation is known only for the radial and plane

jet; for the sphere it can be expected to be a function of e. Using Fig. E-1 and.his

vs. Re values, _t/_m vs. Re is plotted on log-log paper in Fig. E-2 and found to be

nicely fitted by

O. 192 Um 5t

8t/8 m = rlt/_ m = 0.775 Rest where Rest _ (E.9)

This relationship is valid for the spherical wall jet if k does not vary significantly.

If it does, the right-hand side should be corrected with the ratio of k's to the fourth

power.
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It is now only necessary to relate b and 6t . The quantity b has purposely been

left rather undefined so far, but this is now corrected. Rearranging the outer profile

shape given in Eq. (E. 4),

1-  12/3 -- y - 8m Y- 5 m 5t

= b = 5t " -'5-

(E. I0)

The quantity 5t/b can be made to agree with any one point on Glauert's outer layer

profile, and it is convenient to match up the point: u/u m = 0.5 at (y - 5m)/5 t = 1 .

Thus,

St/b 0.440
(E. li)

Checking the fit at (y - 5m)/5 t = 0.5,

profile gives 0. 805.

For u/u m = 0

Glauert has 0.83 and the momentum integral

b/st = 2.27

We now obtain the final dimensional form of the overall momentum equation.

ing Eqs. (E. 9) and (E. 11):

b

Combin-

(E. 12)
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Combining this with Eq. (E. 7),

dM M
d 8 + tan 8

= -0"0620u 2 / v _1/4

m \UmSm]
R (E.13)

where

n 2 u 2 . /urn 8m\ 0"
M = n + 2 Um 5m + 0.511 m _m\ /

24

(E. 14)

which is the wall jet momentum when multiplied by sin 8 •

We make Eqs. (E. 7) and (E. 8) dimensionless by using initialvalues of inner jet width

too and maximum velocity Umo . Assuming the original equations to be written

with primed quantities and indicatingthe dimensionless ratios formed by the ori-
, M'

ginalsymbol(i.e., Um/Umo = u m, 5_/5mo = 5 m, 2 = M) , plus

, 8moUmo
R

5m ° = R o , and the following set of dimensionless equations is obtained:

R
n 1 d 2 n _m n d

n + 2 u2 d8 UmSm - (n + l)(n + 2) tan"'_ - (n + I) um_ UmS m
m

O_062 R o

(am 5m Reo) '1/4
(E. 15)

where

dM M lu _ \o/1/4 2
d"-e-+ _ = -0.0620 R ° m 5m r_e u m

n 2 Urn 2. 24 1.24 0.24M = n +-'---_u 5m + 0.511 5m Re and Rem o o

E-10
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With the initial conditions u mo

and n at the initial value of 0 ,

= 1, 5too -- 1 plus specified values of R o, Re o,

the fluid dynamics problem statement is complete.

In Myers, et al., (Refs. 19, 21, and 22), the heat transfer to a plane wall jet was

measured and a theory developed to predict these measurements. This theory cotild

probably.be generalized to the radial jet case, but a far simpler and more satisfactory

approach for the present purposes is to examine Reynolds' analogy for this wall jet. In

the notation of Myers (Refs. 25 and 26), the wall heat transfer and skin friction are writ-

ten using the effective eddy diffusivities of heat and momentum, eH and eM' respectively:

qw ¢. _._T _. _'w

_Cp-- n_"_"/y=o ;"_" = y = O

Taking the ratio of these two equations, where k = CH/CM:

/  U/Um 1

qw Tw

\ dy/5

The standard Reynolds t analogy is to assume the dimensionless velocity and temperature

profiles are identical (see Hinze, Ref. 23 for a more general statement of Reynolds'

analogy), which is the case for at least laminar flow with l>r = 1. Cancelling the

bracketed quantity and dividing through by UmATm, the left-hand side is the dimen-

sionless Stanton number. With the commonly accepted l>randtl number correction in-

cluded, Reynolds v analogy becomes

cf l>r m
St = k 7

Using the Blasius skin friction relationship, and Reynolds' analogy, we then have the

relationship between the local heat transfer coefficient and the local boundary layer

velocity and thickness.
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A digital computer program has been utilized to integrate numerically these equations

for specific cases. For specified initial conditions of tank radius, jet velocity, and

jet thickness, the following parameters are computed as a function of position around

the tank wall: maximum velocity in jet, distance between tank wall and maximum jet

velocity stream line, jet momentum, total jet thickness, heat transfer coefficient

between jet and wall.

These results have been obtained for a variety of initial conditions. Examination of

output from computer runs has indicated that the thickness of the wall jet grows very

rapidly. Therefore, results beyond a meridional angle of approximately 120 deg are

not valid,due to the thickness of the jet in relation to the radius of the tank. Computed

results will, however, be conservative since with the wall jet model it is assumed that

the jet will be in contact with stagnant liquid. This condition would occur only when

the mixer unit is first started. In time, a central vortex will develop in the tank, tend-

ing to drag the upper portions of the jet along so that a more constant velocity (and heat

transfer coefficient) is maintained around the tank.
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SYMBOLS AND ABBREVIATIONS

qw - Wall Heat Transfer Rate, Btu/hr-ft 2

Tw - Skin Friction at Wall, lb/ft 2

T. - Shear at Arbitrary Distance From Wall, lb/ft 2

5 - Point of Maximum Velocity, ft
m

5. - Arbitrary Distance From Wall, ft
1

u - Maximum Velocity in Wall Bound Jet, ft/secm

y - Direction Perpendicular to Tank Wall, ft

R - Radius of Sphere, ft

0, _b - Angles in Two Mutually Perpendicular Planes Through Center of Sphere

- Unspecified Constant

- (y- 5m/b )

v - Kinetic Viscosity, ft2/sec

5t - Outer Thickness, 5m - 5m/2, ft

f - Dimensionless Stream Function at u
om m

K - Proportionality Factor for Eddy Mixing in Outer Half of Jet

_t/_m - Ratio of Boundary Layer Thicknesses, 5t/5 m

eH- Eddy Diffusivity of Heat, ft2/hr

aM - Eddy Diffusivity of Momentum, ft2/hr

St - Stanton Number

P - Prandtl Number
r

Cf - Skin Friction Coefficient

NOTE: Primed quantities are symbols from original equations; subscript o indicates
initial value.
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Appendix F

CENTRAL OR AXIAL JET

For this analysis, consider the model shown in the sketch below.

emitted at one end of the tank, along the axis.

A jet of liquid is

MIXER
UNIT

I LI?UID _ "

JET

In a zero-g environment, only inertial and viscous forces act on the jet. If a vapor

bubble is in the path of the liquid stream, the free surface will be distorted by the

dynamic forces which are opposed by the surface tension. If these dynamic forces

are large enough, the jet will break through the bubble and then be constrained to flow

along the wall. A free-body diagram of the deflected portion of the free surface is

also shown in the sketch. The inertial force deflecting the bubble is

= _ d 2 U 2F I P AU2 = _- P (F. 1)

F-1
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The opposing surface tension force is

Fa =_d
x

For bubble break-through, the following condition must be satisfied

(F. 2)

6

I

U 2 d 2
FI P x>
Fa 4o d x

(F. 3)

From this, the critical Weber number is determined to be:

U 2 d
x x

W e = 4 = o/---_ (F.4)
or

The critical Weber number is based upon local conditions at the interface. However,

for design purposes, these conditions must be related to the jet velocity and size.

Conservation of jet momentum gives

PjA x + 0jAjI_j = PxAx + 0xAx U2x (F. 5)

In a large axisymmetric tank, in a zero-g environment, the pressure can be assumed

to be uniform throughout, i.e., P. = P . The momentum equation reduces to
] x

U.2 = A U2 (F. 6)
Aj J x x

Substituting this into the expression for critical Weber number, we get for a critical

jet Weber number

eJcr cr\ j /
(F.7)
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If we now assume that the jet spreads at a constant angle

dd-'-_= 1 + . tan0
J ]

Therefore, combining Eqs. (F.4), (F.7), and (F.8)

We,r

0 , and that x = H, then

(F. 8)

(F. 9)

The theoretical analysis of a submerged circular jet predicts that 0 = 9 deg , which

results in the following equation for critical jet Weber number:

(W . - J---_= 4 1 + 0.16 H
eJcr a (F. 10)
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SYMBOLS AND ABBREVIATIONS

A -- Flow Area of Jet at x, ft 2
X

U -- Velocity at x, ft/sec
X

d - Width of Jet at x, ft
X

-- Surface Tension, lb/ft

We -- Critical Weber Number at Liquid Vapor Innerface
cr

P -- Pressure at x
x

P. -- Pressure at Nozzle, psi
J

U. -- Velocity at Nozzle, ft/sec
J

d. - Jet Diameter at Nozzle, ft
J

H - Jet Height, ft

0 -- Jet Spreading Angle, deg

WeJc r -- Critical Weber Number at Jet Nozzle

F-4
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Appendix G

TWO-DIMENSIONALJET

Consider a jet being confined between two closely spaced plates,

sketch below.

as shown in the

The ratio of forces at the liquid vapor interface is

F___L= PAIJx 2 p U 2 td' = X X

F a 2o (t+d) 2a (t+ dx)
(G. 1)

From which we define a critical Weber number based upon the plate, spacing is

Again,

2

(_= 2 1+
or

conservation of momentum gives

2 2

PjA + pjAjUj = Px A + PxAU + F 0

(G. 2

(G. 3)

where F 0 is the jet drag on the two fiat plates.
G-1
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Because of this drag, Pi _

local quantities.

P and additional relations are needed to relate jet and
X

The continuity equation is

pjAjUj = PxAxUx - Am (G. 4)

where Am is the entrained mass.

Continuity of mass then gives

Since the flow is incompressible, pj = 0x .

Ux = Uj + Pj---_x (G. 5)

i

If the thickness of the jet (distance between plates) is small compared to the width,

then Am can be assumed to be negligible. Also,

A = dt
X X

A. = d.t
J J

and we get for the velocity

= U. -_- (G. 6)
Ux j d x

Substituting this into the expression for the critical Weber number expression (G. 2) gives,

(t)o = 2 1 +_-_x (G. 7)

or

pU2. t

_=o 2(1

2

t+d_ (G. 8)
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It is assumed that the jet spreads at a constant angle 0 , and that x = H and the

equation for the critical jet Weber number becomes

W. - =2 1+
_. 1 + H/d. taneJcr

(.G. 9)

G-3
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SYMBOLS AND ABBREVIATIONS

F I - Inertia Force, lb

F_ - Surface Tension Force, lb

A
X

C __

X

O" --

Density of Circulating Fluid

Jet Flow Area at Distance x From Nozzle,

Jet Velocity at Distance x, ft/sec

Surface Tension, lb/ft

ft 2

t - Distance Between Plates (Thickness of Two-Dimensional Jet), ft

d

X

P. --

J

i. --

J

U° --
J

Am --

Width of Jet at Distance x , ft

Pressure at the Nozzle, psi

Nozzle Flow Area, ft 2

Jet Velocity, ft/sec

Entrained Mass, lb

WeJcr- Critical Weber Number at Jet Nozzle

0 - Jet Spreading Angle, deg

G-4

LOCKHEED MISSILES & SPACE COMPANY



LMSC-A839783

Appendix H

SUBSCALETESTPROGRAM

The experimental program presented herein has provided sig-nificant insight into the

expected circulation patterns of a propellant tank, employing a mixer in a zero-g

environment. Both qualitatb _- _md quantitative information were obtained on the effect

of jet geometry and internal tank _ardware on circulation patterns and mixer

requirements.

TEST APPARATUS

Earth-bound simulation of zero-g fluid mechanics is most generally, and perhaps most

precisely, accomplished with the use of a drop tower. However, drop-tower tests ,_re

extremely limited in the time available for observation of a dynamic flow field. This

disadvantage was avoided with the test apparatus show:_ in Fig. H-1. Basically, the

simulated tank is a very thin cylinder, 2 ft in diameter but only 1/8 in. deep. A 2-ft-

diameter circle was cut from a 1/8-in. sheet of Plexiglas. This sheet is then sand-

wiched between two 1/2-in.-thick Plexiglas face plates which [orm the ends of the

shallow cylinder. The lower plate has two holes drilled in it - one for an inlet to the

jet and the other for a discharge port which is connected to the reservoir. A pump is

connected between this reservoir and the inlet port to form a closed circulation loop.

Two different jet plates were provided so that the jet could be directed out along the

major axis (i.e., a central jet) or along the wall. The Plexiglas flow tank was sup-

ported around the edges with an aluminum box structure. This entire package was

then mounted in a support frame through a horizontal axis, which allowed easy re-

orientation of the flow tank from the horizontal (simulated 0-g) to the vertical (l-g)

position.

H-1
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TEST OPERATION

If one is to simulate the zero-g flow patterns, the body forces must be insignificant

compared to the inertial and surface tension forces. This was accomplished by

placing the thin two-dimensional apparatus horizontally, with the jet directed in the

horizontal plane. The body force is then limited to the equivalent of 1/8 in. of fluid

and acts orthogonally to the much larger dynamic forces created by the jet. It was

also much smaller than the surface tension forces. This was evidenced by the in-

ability of the fluid to form a free horizontal surface with a partially filled tank in a

no-flow condition, i.e., the upper and lower plates were equally wetted by the fluid

under all levels of the tank fill.

The test operation was rather simple, once the desired jet configuration was installed.

The apparatus was locked in the horizontal position and filled to some arbitrary level.

Then the pumps were turned on, with the flow restricted to a value less than sufficient

to span the tank. The volumetric flow rate was measured, and a qualitative evaluation

of the flow patterns was made from observations on the activity and location of the air

bubbles in the tank. Jet velocities were calculated from the measured volumetric flow

and the known jet area. The flow rate was increased, in steps, beyond the point where

the jet completely spanned the tank, and flow was visually observed everywhere along

the walls. In some cases, the patterns were recorded with photographs and movies.

TEST RESULTS

Approximately 60 tests have been run in which data were recorded. These tests are

presented in Table H-l, along with a subjective evaluation of the mixing patterns. The

various test series are associated with specific modifications to the basic test appara-

tus described previously in the paragraph entitled Test Apparatus. These modifica-

tions are shown schematically in Fig. H-2. The basic apparatus shown in Fig. H-1

and the modified apparatus A and B provide data on the central jet and correspond to

the two-dimensional analytical model for establishing critical Weber number. In

addition, B provides data on the effect of baffles on the circulation patterns created

by the central jet. Apparatus C simulates a tangential mixer discharge.

H-3
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24

±

MODIFICATION A MODIFICATION B
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NOTE:
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i

MODIFICATION C

Fig. H-2

MODIFICATION D

Modified 2-D Flow Test Apparatus
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In D, a simulated pipe is provided to duct the circulating propellant to the opposite end

of the _nk so that the mixer intake and discharge are on opposite ends of the tank.

This guarantees circulation throughout the tank.

There were six tests conducted with the basic apparatus, of which only two were in the

simulated 0-g position. The higher of the two flow rates agreed very well with the

critical Weber number theory developed previously. The other four tests were with

the apparatus in the upright position. No quantitative conclusions were obtained from

these tests.

Apparatus A was identical to the basic apparatus, except for size. A 1-ft-diameter

circle was cut from a sheet of gasket material. This sheet was then contoured to fill

in the 2-ft circle and sealed in place so that the effective tank diameter was reduced

to 12 in. Twenty tests were conducted with this modification, of which 10 were with

alcohol and air and the rest with water and air. These simulated 0-g tests also tended

to confirm critical Weber number theory. Figure H-3 is a series of photographs

showing circulation with various flow rates which progressively increase to a value

well above that for the critical Weber number for this series of tests. When the Weber

number exceeded critical, the gas bubbles were removed from the walls. Eighteen

tests were conducted with B. This apparatus is identical to A except for scaled

baffles that were placed on each side of the tank. On one side, they were adjacent

to the wall; on the other, they were displaced. It was generally noted that the cir-

culating fluid would flow through the gap and wash the bubbles from between the baffles

when the flow rate was approximately 30 percent greater than the critical flow rate in

the clean tank (i. e., the flow rate for which We = Wecr). However, even for much

lower velocities, there is obvious agitation of the trapped gas bubbles.

Apparatus D was used for approximately 15 tests. With this arrangement, all gas

bubbles were washed away from the walls, and the circulating fluid flowed behind all

three baffles when the flow rate was approximately the same as the critical flow for

the central jet in the 2-ft tank. A photo array showing the circulation patterns for

progressively higher flow rates is shown in Fig. H-4.

H-13
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